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Abstract

This paper develops a new method for estimating production-function parameters that can be
applied in differentiated-product industries with endogenous quality and variety choice. We take
advantage of data on physical quantities of outputs and inputs from the Colombian manufacturing
survey, focusing on producers of rubber and plastic products. Assuming constant elasticities of
substitution of outputs and inputs within firms, we aggregate from the firm-product to the firm
level and show how quality and variety choices may bias standard estimators. Using real exchange
rates and variation in the “bite” of the national minimum wage, we construct external instruments
for materials and labor choices. We implement a simple two-step instrumental-variables method,
first estimating a difference equation to recover the materials and labor coefficients and then
estimating a levels equation to recover the capital coefficient. Under the assumption that the
instruments are uncorrelated with firms’ quality and variety choices, this method yields consistent
estimates, free of the quality and variety biases we have identified. Our point estimates differ from
those of existing methods and changes in our preferred productivity estimator perform relatively
well in predicting future export growth.
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1 Introduction

A central challenge in estimating production functions is to estimate the elasticities of real output

with respect to real inputs, unconfounded by differences in prices across firms. Estimates of

these elasticities are key to constructing standard measures of total factor productivity (TFP),

the most commonly used metric of firm performance. They are also important for estimating

markups in the influential method of Hall (1986) and De Loecker and Warzynski (2012). As

recently emphasized by Bond et al. (2020), that method requires an elasticity of real output, not

of sales or value-added, in order to generate informative estimates of markups.

Two difficulties in estimating such elasticities have received particular attention. First, prices

and physical quantities of outputs and inputs are usually not observed at the firm (or plant) level.

The most common solution is to regress sales (or value-added), deflated by a sector-level price

index, on material expenditures and other inputs, similarly deflated. It has long been recognized

that the resulting estimates may reflect idiosyncratic variation in market power at the firm level

(Klette and Griliches, 1996; Foster et al., 2008, 2016; De Loecker and Goldberg, 2014). Second,

firms may choose variable inputs after observing shocks to their own productivity in a given period,

generating a positive correlation between unobserved productivity shocks and the input choices

— the familiar “transmission bias” problem, first noted by Marschak and Andrews (1944).1

Information on prices and quantities at the firm-product level, while still uncommon, is in-

creasingly available and has enabled researchers to make progress on the first issue. Focusing

on eleven homogeneous products in the US Census of Manufactures, Foster et al. (2008) esti-

mate regressions with physical output quantities on the left-hand side, yielding output elasticities

arguably purged of demand-side influences. Although Foster et al. (2008) do not use physical

quantities of inputs, in cases where inputs are homogeneous and quantities are observed it is

straightforward to extend their approach and put physical quantities of inputs on the right-hand

side (Atalay, 2014).

But as suggested by Katayama et al. (2009), Grieco and McDevitt (2016), Atkin et al.

(2019), Jaumandreu and Yin (2018) and others, using physical quantities may be misleading

in differentiated-product industries where the quality and variety of outputs and inputs vary

across firms and over time. If consumers value product quality and variety, then they should be

1For reviews, see Griliches and Mairesse (1998), Bartelsman and Doms (2000), Ackerberg et al. (2007), Van
Biesebroeck (2008), Syverson (2011), De Loecker and Goldberg (2014), Section 2 of Ackerberg et al. (2015), and
Section 2.2.1 of Verhoogen (2020).
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incorporated in our notion of real output; similarly, if input quality and variety matter for real

output, then they should be incorporated in real inputs. But once one accepts these propositions,

estimates using only physical units may be subject to what we call quality and variety biases.

For instance, a firm may take advantage of an increase in capability to produce fewer physical

units of higher-quality goods (for a given set of inputs), generating a negative bias in output

elasticities estimated using only physical output quantities. If more-productive firms tend to use

higher-quality inputs and this choice is correlated with the physical quantity of inputs used, then

another form of bias arises, with the direction depending on the sign of the input quality-quantity

correlation. Similar biases can also result from the endogenous choice of variety by firms, or from

exogenous shocks to product appeal or input quality, if firms’ choices of physical units of inputs

respond.

In this paper, we develop a new approach to estimating output elasticities that takes advan-

tage of quantity information, that is arguably not subject to quality or variety biases, and that

also addresses the transmission-bias problem. The method can be applied in horizontally and

vertically differentiated industries with multi-product firms and requires relatively weak theoret-

ical assumptions on the nature of demand and market competition. We implement it in data

from the Colombian manufacturing survey, which contains information on prices and quantities

of both inputs and outputs, focusing (for reasons discussed below) on producers of rubber and

plastic products.

The paper makes three main contributions. The first is to highlight conceptually how estimates

of output elasticities based on physical quantities may be misleading in industries where quality

and variety vary differentially by firm over time. As in almost all similar datasets, the mapping

between specific inputs and specific outputs within the firm is unobserved.2 Our approach is to

aggregate from the firm-product to the firm level. It is not possible to do this aggregation in a

theory-free way; any aggregation embeds assumptions, implicit or explicit, about consumer and

firm behavior. Here we assume that outputs and inputs, respectively, have constant elasticities of

substitution (CES) within firms. We place minimal constraints on substitution elasticities across

firms. Following common practice, we assume that (firm-level aggregate) materials, labor, and

capital combine in Cobb-Douglas fashion. Although restrictive, the within-firm CES structure is

convenient in that it allows us to express the change in each aggregate as the sum of an observ-

2We are aware of only two exceptions with a substantial number of firms, a dataset on Bangladeshi garment
firms used by Cajal Grossi et al. (2019) and one on Chinese steel firms used by Brandt et al. (2018).
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able quantity index and unobservable terms capturing quality and variety. This in turn makes

transparent how differences in quality and variety may bias standard estimates. Empirically, we

will show that our estimates are robust to using other common aggregators at the firm level.

Our second contribution is to address transmission bias by introducing “external” instruments

capturing exogenous variation in input prices at the firm level. The idea that external instruments

in general, and input prices in particular, would be an attractive solution to the transmission-bias

problem has been “in the air” for many years, at least since the landmark review by Griliches and

Mairesse (1998).3 Several recent papers have acknowledged that factor prices would be natural

instruments, but have argued that it would be difficult to find truly exogenous variation at the firm

level.4 In the absence of credible external instruments, two approaches have dominated the recent

literature. One has been to construct a proxy for unobserved productivity by inverting either

an investment-demand or a materials-demand equation, which requires a monotonic relationship

between the productivity term (assumed to be scalar) and investment or materials, conditional

on other observables (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Wooldridge, 2009; De

Loecker, 2011; Doraszelski and Jaumandreu, 2013, 2018; Ackerberg et al., 2015; Gandhi et al.,

2020). Another approach has been to construct “internal” instruments using lagged values of

inputs (Chamberlain, 1982; Anderson and Hsiao, 1982; Arellano and Bond, 1991; Arellano and

Bover, 1995; Blundell and Bond, 1998, 2000).5 In this panel-data approach, the most successful

strategy has been the “System GMM” estimator of Arellano and Bover (1995) and Blundell and

Bond (1998, 2000), which supplements an equation in first differences, using lagged levels as

instruments, with an equation in levels, using lagged differences as instruments.

Our aggregation strategy requires firm-specific normalizations, which we absorb with a firm

effect in our main estimating equation. As a consequence, the proxy-variable strategy is not an

attractive option, because the firm effect would violate the required monotonicity assumption

3Griliches and Mairesse (1998) write that the “future” of production-function estimation lies in “find[ing] (in-
strumental) variables that have genuine information about factors which affect firms differentially as they choose
their input levels” (p. 198) and describe using “factor prices ... as instrumental variables to identify the parameters
of interest” as an “obvious” solution. Nerlove (1963) is an early paper using an external instrument — electricity
prices — in production-function estimation.

4For instance, Ackerberg et al. (2015, p, 2418, fn 3) write: “if one observed exogenous, across-firm-variation
in all input prices, estimating the production function using input price based IV methods might be preferred to
OP/LP [Olley-Pakes/Levinsohn-Petrin] related methodology (due to fewer auxiliary assumptions).” But they also
note that “the premise of most of this [proxy-variable] literature is that such variables are either not available or
not believed to be exogenous.” See also Ackerberg et al. (2007, p. 4208) and Gandhi et al. (2020, Sec. 6.1).

5The two dominant approaches are themselves related, since the proxy-variable methods often use lagged levels
as instruments, as discussed in Ackerberg et al. (2015, Sec. 4.3.3).
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(Ackerberg et al., 2015). We instead build on the panel-data approach, which more easily accom-

modates the firm effect. But rather than include further and further lags as instruments, which

is commonly done but may raise concerns about instrument strength, we include a parsimonious

set of lags and two external instruments capturing exogenous variation in input prices. To con-

struct the materials-price instrument, we first use exchange rates to predict import-price changes

at the product level, omitting one firm at a time in making the predictions. We then use the

lagged product composition of a firm’s imports, in conjunction with the “leave one out” predicted

import-price changes, to construct a firm-specific predicted import price index. To construct the

wage instrument, we interact changes in the national minimum wage, which saw large increases

in real terms over our study period, with an indicator for how binding the change was likely to be

on particular firms (the “bite” of the minimum wage), defined as the lagged ratio of the minimum

wage to the average wage for permanent employees in the firm. We will see that the external

instruments are helpful in alleviating (if not completely removing) weak-instrument concerns.

In estimating the coefficient on capital, we face a well-known difficulty: methods with trans-

formations to remove firm effects — either first-differencing or deviating from firm means — tend

to yield implausibly low estimates.6 The most common explanation is that transformations to

remove the firm effect exacerbate the attenuation bias due to measurement error; other expla-

nations, discussed below, are also possible (Griliches and Mairesse, 1998). Others have found

that this problem persists when instrumenting the change in capital with lagged levels (see e.g.

Ornaghi (2006)). Fundamentally, the issue is that much of the genuine variation in capital stock

is cross-sectional; the within-firm evolution of capital stock — and, in particular, of utilized cap-

ital — is very difficult to measure well. The main existing approaches, proxy-variable methods

and System GMM, both rely to some extent on cross-sectional variation to estimate the capital

coefficient.

Our third contribution is an approach to estimation that allows us both to absorb the firm

effect when estimating the materials and labor coefficients and to take advantage of cross-sectional

variation to estimate the capital coefficient. In the broad spirit of System GMM, we combine

a difference equation, using lagged levels as instruments, with a levels equation, using lagged

differences as instruments. But rather than estimating the equations simultaneously using GMM,

we estimate them separately in what we call a two-step instrumental-variables (TSIV) procedure.

6See e.g. Griliches and Mairesse (1998), Ackerberg et al. (2007), and Ackerberg et al. (2015).
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In the first step, we first-difference and use the external instruments described above, together

with a parsimonious set of lagged levels, to recover the coefficients on materials and labor. In

the second step, we use the first-step estimates of the materials and labor coefficients and impose

an additional assumption that ensures orthogonality between the lagged difference in log capital

and the firm effect; this allows us to use the lagged difference of capital as an instrument in an

IV model in levels.7 If the model is correctly specified, the TSIV estimator is less efficient than

simultaneous GMM estimation of the difference and levels equations, but it has the advantage that

the materials and labor coefficient estimates are robust to misspecification of the levels equation

(Kripfganz and Schwarz, 2019).

The TSIV procedure yields plausible point estimates: we find materials and labor coefficients

of approximately .4, and a capital coefficient of approximately .2. The fact that constant returns

to scale approximately hold is reassuring. Although the standard errors are large enough that the

differences with standard estimators are generally not statistically significant, the point estimates

display some interesting patterns. The materials coefficient is lower than, and the labor coefficient

larger than, the coefficients from (a) naive OLS estimation using revenues for output and materials

expenditures for material input, (b) the Olley and Pakes (1996) and Levinsohn and Petrin (2003)

proxy-variable methods, and (c) standard System GMM.8 Somewhat surprisingly, our estimates

(including for capital) are similar to those from OLS in levels using our constructed quantity

aggregates.

The main goal of this paper is to provide a new approach to estimating output elasticities,

which are useful for several purposes, including calculating markups. But it is natural to ask how

TFP measures constructed from our estimates perform relative to other TFP measures commonly

used in the literature. We face a choice between a revenue-based TFP and a quantity-based TFP

measure based on our quantity indexes. We note that even with our improved estimates of output

elasticities, neither measure corresponds directly to technical efficiency. Our revenue-based TFP

may reflect pure output or input price differences, and our quantity-based TFP may be biased

by quality and variety choices (even if the output-elasticity estimates are not). We favor using

revenue-based TFP, and keeping in mind that it may capture price differences as well as technical

efficiency. To compare with TFP estimates from other methods, we examine the extent to which

7The second-step approach is akin to that of Collard-Wexler and De Loecker (2016).
8Our materials estimate is quite similar to the one we obtain by applying Gandhi et al. (2020) in our data, and

our labor coefficient is somewhat smaller.
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estimated changes in revenue-based TFP predict future changes in export performance, and we

find that our estimates compare well to standard methods.

In addition to the studies cited above, this paper is related to several branches of literature.

It is perhaps most closely related to a small number of studies on production-function estimation

in multi-product firms using information at the firm-product level. This literature has dealt in

different ways with the lack of an observed mapping between inputs and outputs in multi-product

firms. One strategy has been to focus on single-product firms, for which the mapping is clear,

and (in some cases) to do a selection correction for the fact that they may not be representative

(Foster et al., 2008; De Loecker et al., 2016; Garcia-Marin and Voigtländer, 2019; Balat et al.,

2018; Blum et al., 2018).9 Recent work by Dhyne et al. (2020a,b) develops an alternative strategy

of estimating simultaneous equations relating output of each good to firm-level input usage and

the output levels of other goods. This strategy requires as many proxies as products and a multi-

dimensional generalization of the monotonicity condition, and it tends to reject the hypothesis

that single-product production is a good approximation for multi-product production. Another

approach has been to use estimates of demand elasticities and profit-maximization conditions to

infer the allocation of inputs to outputs that would be implemented by optimizing firms (Orr, 2020;

Valmari, 2016).10 Our strategy, by contrast, is to aggregate both outputs and inputs to the firm

level. Previous papers that have aggregated from the firm-product to the firm level include Eslava

et al. (2004, 2013), Ornaghi (2006), Doraszelski and Jaumandreu (2013), Smeets and Warzynski

(2013) and Bas and Paunov (2020).11 These papers do not use CES aggregators, nor do they

show how explicitly how quality or variety differences enter firm-level price or quantity indexes.

Our approach builds on an extensive literature using CES functions in addressing other questions,

including Feenstra (1994), Hsieh and Klenow (2009), Hottman et al. (2016), and Redding and

Weinstein (2020).

This paper is also related to studies that explicitly consider differences in the quality of outputs

or inputs in a production-function context. Melitz (2000), Katayama et al. (2009), and Grieco et

9Foster et al. (2008) include in their sample only firms in which one product makes up more than 50% of
revenues, thus essentially focusing on single-product firms. De Loecker et al. (2016) implement a modified version
of the Ackerberg et al. (2015) proxy-variable method and focus on calculating mark-ups at the firm-product level
in Indian data. In Chilean data, Garcia-Marin and Voigtländer (2019) use firm-product-level markups calculated
along the same lines to infer marginal costs and to relate them to firms’ export behavior.

10See also Gong and Sickles (2019) and Forlani et al. (2016).
11Dhyne et al. (2020a) and Garcia-Marin and Voigtländer (2019) employ similar aggregations in parts of their

analyses.
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al. (2016) propose estimators that take quality differences into account in settings where product-

level information is not observed; the lack of direct price and quantity data means that they must

rely on more restrictive theoretical assumptions than we do here. Fox and Smeets (2011) show

that including detailed indicators of labor quality significantly reduces the dispersion of estimated

productivities across firms in Denmark, but they do not have product-level information on outputs

or inputs. For the most part, the literature exploiting information at the firm-product level does

not explicitly take into account quality or variety differences. Exceptions include De Loecker et

al. (2016) and Eslava and Haltiwanger (2020), who use control-function approaches to address

potential quality and variety biases.12 Two recent papers take advantage of detailed product

characteristics in particular sectors. Focusing on outpatient dialysis centers in the US, Grieco and

McDevitt (2016) find that firms trade off quality and quantity of care, suggesting that measures

of performance based solely on quantity can be misleading. In an Egyptian rug cluster, Atkin

et al. (2019) collect direct measures of rug quality and producer performance under laboratory

conditions and also find that purely quantity-based measures of performance are misleading. Such

direct measures of product quality are clearly very valuable for estimating firm performance, but

unfortunately they are rarely available. We view our method as being most useful in settings

where product prices and quantities are available but detailed product characteristics are not.

Relative to the existing literature, our approach has costs and benefits. On one hand, some of

our assumptions are stronger than those of other methods. We impose an unusually strong (but

testable) restriction on the evolution of unobserved productivity, discussed below. We require

exclusion restrictions for our instruments. We do not consider firms’ endogenous investments in

raising productivity, as do for instance Doraszelski and Jaumandreu (2013, 2018). The within-

firm CES assumptions are restrictive (although the empirical patterns are robust to using other

aggregators). On the other hand, we are able to avoid some strong assumptions required by other

methods. We do not need a scalar monotonicity condition to ensure invertibility of an investment

or materials-demand function as in proxy-variable methods. Although we presume some maxi-

12De Loecker et al. (2016) describe their approach as addressing “input price bias” and “output price bias” and
do not explicitly address what we call quality and variety biases. They put flexible functions of output prices and
market shares in a control function for input demand and put physical quantities of output on the left-hand side.
Arguably, this approach completely removes quality biases only in the special case where input and output quality
are perfectly correlated, which is unlikely to hold exactly in practice, and does not address what we call variety
biases. Eslava and Haltiwanger (2020) also use CES aggregation, but they do so in the context of joint GMM
estimation of production and demand functions, which requires CES across as well as within firms, while here we
do not need to impose a particular demand structure across firms.
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mizing behavior on the part of firms to justify the CES aggregation, we do not need first-order

conditions for aggregate materials or labor to hold exactly as in Doraszelski and Jaumandreu

(2013, 2018) and Gandhi et al. (2020). We can remain agnostic about cross-firm demand elastic-

ities. Relative to the panel-data literature, we are able to reduce the reliance on lagged internal

instruments. We can also relax the assumptions required for the levels equation in System GMM,

and do not need them at all if we are only interested in the output elasticities with respect to

materials and labor. We explicitly consider output and input quality and variety differences, as

relatively few other papers have done. While there are trade-offs, we believe that, on balance,

our method represents an attractive alternative to existing methods in differentiated-product

industries where quantity information and external instruments are available.

The next section develops our econometric strategy. Section 3 describes the data we use and

our motivation for focusing on producers of rubber and plastic products. Section 4 presents our

baseline estimates of output elasticities, and Section 5 conducts several robustness checks. Section

6 compares our coefficient estimates to those of other common estimation methods. Section 7

constructs productivity measures using our coefficient estimates and examines how well they do,

relative to existing measures, in predicting future export performance. Section 8 concludes.

2 Econometric Strategy

This section first presents the theoretical framework that underpins our firm-level aggregation

and estimating equations. We begin on the demand side (Subsection 2.1) and then turn to the

production side (Subsection 2.2) and rewrite the production function using decompositions of

our output and input aggregates, which makes clear how endogenous quality and variety choices

may bias standard estimates (Subsection 2.3). We then present our two-step IV (TSIV) strategy

(Subsection 2.4). Full derivations are in Appendix A.

2.1 Demand

The first task is to construct a measure of real output at the firm level — firm-level sales deflated

by an appropriate firm-specific price index. In differentiated-good industries, any price index

necessarily embeds assumptions about how a firm’s products enter consumers’ utility. Here we

follow Hottman et al. (2016) and others in imposing constant elasticity of substitution of products
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within firms. This is restrictive, but unlike much of the existing literature we do not need to make

strong assumptions about the elasticity of substitution of products across firms. (We will also show

(in Section 5.1 below) that the empirical patterns are robust to using other common aggregators.)

We assume that a representative consumer has the following utility function:

Ut = U(Ỹ1t, Ỹ2t, ..., ỸIt) where Ỹit =

∑
j∈Ωyit

(ϕijtYijt)

σ
y
i
−1

σ
y
i


σ
y
i

σ
y
i
−1

(1)

Here i, j and t index firms, products (outputs), and periods (years), I is the total number of firms,

Yijt is physical quantity of output, σyi is the elasticity of substitution between outputs, specific to

firm i, and Ωy
it is the set of products sold by the firm. The ϕijt terms are demand shifters that

can be interpreted as product appeal or quality, which may reflect endogenous choices of the firm

(e.g. physical attributes of goods) or external factors (e.g. exogenous fashion trends). We assume

that U(·) is quasi-concave and weakly separable in its arguments. We follow common practice and

assume that σyi > 1. Although the consumer optimization problem would remain well-behaved

as long as σyi > 0,13 the stronger σyi > 1 ensures that the representative consumer will purchase

more units of a good that increases in appeal, which seems realistic in our context.14

The assumption of weak separability and the homotheticity of Ỹit imply that the consumer’s

optimization problem can be solved in two stages, first choosing the quantity of each variety from

firm i, Yijt, to minimize the cost of acquiring each unit of Ỹit and second choosing Ỹit to maximize

utility. Assuming the consumer optimizes in the first stage, the price required to purchase one

unit of Ỹit is:

P̃it =

∑
j∈Ωyit

(
Pijt
ϕijt

)1−σyi
 1

1−σy
i

(2)

This is the price index that sets P̃itỸit = Rit, where Rit is the consumer’s total expenditures on

goods of firm i, which are also the firm’s revenues. Note that it is quality-adjusted: conditional

13See Appendix A.1. For the knife-edge Cobb-Douglas case of σyi = 1, we would need an additional condition to
ensure that the optimization problem remains well-behaved.

14As noted by Redding and Weinstein (2020), σyi > 1 is sufficient to ensure that products are “connected sub-
stitutes” in the sense of Berry et al. (2013) and hence that the demand system is invertible. This is a sufficient
condition, not a necessary one, and our method could be implemented in settings with a greater degree of comple-
mentarity between products, but for reasons of realism and convenience we maintain the standard assumption.
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on the price of a given output, higher output quality reduces the value of the index.

An attractive feature of our approach is that we do not need to impose further assumptions

on demand. The assumption of quasi-concavity implies that there is a unique demanded bundle,

given by:

Ỹit = Dit(P̃1t, ..., P̃It, Ct) for i = 1, 2, ..., I (3)

where Ct is total consumption in period t. The demand for the output aggregate of a given firm

depends only on the firm’s own aggregate price index, the price indexes of other firms, and total

consumption. We can leave the D(·) function unspecified.

The within-firm CES assumption allows us to decompose changes in the firm-specific price

index in a particularly convenient way. Let Ωy∗
it be firm i’s common outputs between t − 1 and

t (i.e. Ωy
it−1 ∩ Ωy

it), R
∗
it be the consumer’s expenditures on common goods (i.e. common-goods

revenue for the firm), P̃ ∗it and Ỹ ∗it be the price and quantity indexes for common goods analogous

to P̃it and Ỹit, S
y
ijt be the consumer’s expenditure share on product j among all products produced

by firm i, and Sy∗ijt be the corresponding share among common goods.15 Following Sato (1976),

Vartia (1976), Feenstra (1994) and Redding and Weinstein (2020), it is straightforward to show

(see Appendix A.1) that the log change in the firm-specific price level can be expressed as:

ln

(
P̃it

P̃it−1

)
=
∑
j∈Ωy∗it

δijt ln

(
Pijt
Pijt−1

)
−
∑
j∈Ωy∗it

δijt ln

(
ϕijt
ϕijt−1

)
︸ ︷︷ ︸

=ln

(
P̃∗
it

P̃∗
it−1

)
− 1

σyi − 1
ln

(
χyit−1,t

χyit,t−1

)
(4)

where:

δijt =

(
Sy∗ijt−S

y∗
ijt−1

lnSy∗ijt−lnSy∗ijt−1

)
∑

j∈Ωy∗it

(
Sy∗ijt−S

y∗
ijt−1

lnSy∗ijt−lnSy∗ijt−1

) , χyit,t−1 =
∑
j∈Ωy∗it

Syijt, χyit−1,t =
∑
j∈Ωy∗it

Syijt−1 (5)

The first term on the right-hand side of (4) is (the log of) the familiar Sato-Vartia index (Sato,

1976; Vartia, 1976); it is an observable weighted average of product-specific price changes for

15That is, R∗it =
∑

Ω
y∗
it
PijtYijt, P̃

∗
it =

[∑
j∈Ω

y∗
it

(Pijt/ϕijt)
1−σyi

] 1
1−σy

i , Ỹ ∗it =
[∑

j∈Ω
y∗
it

(ϕijtYijt)
1−σyi

] 1
1−σy

i Sy∗ijt =
PijtYijt
R∗
it

for j ∈ Ωy∗it , and Syijt =
PijtYijt
Rit

.
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common goods, with the “Sato-Vartia weights” δijt. The second term is a weighted average

of changes in (unobservable) product quality, again using the Sato-Vartia weights. Intuitively,

increases in product quality tend to reduce the price index, other things equal.16 Together, the

first and second terms are equal to the log change in the common-goods price index, P̃ ∗it. The

third term is an adjustment for entry and exit of products, first introduced by Feenstra (1994).

Increases in product variety also tend to reduce the price index.17 Although the σyi term is

unobservable, the χyit−1,t and χyit,t−1 terms (which capture the common-goods shares of total firm

revenues in periods t− 1 and t) are observable.

Appendix A.1 further shows that the log change in the quantity index, Ỹit, can also be ex-

pressed in a simple decomposition:

ln

(
Ỹit

Ỹit−1

)
=
∑
j∈Ωy∗it

δijt ln

(
Yijt
Yijt−1

)
+
∑
j∈Ωy∗it

δijt ln

(
ϕijt
ϕijt−1

)
︸ ︷︷ ︸

=ln

(
Ỹ ∗
it

Ỹ ∗
it−1

)
+

σyi
σyi − 1

ln

(
χyit−1,t

χyit,t−1

)
(6)

where Ỹ ∗it is the quantity index for common goods. The first term is again the log of a Sato-Vartia

index, this time for quantities, the second term captures improvements in product quality, and

the third term captures increases in product variety.

It is worth noting that this within-firm CES approach nests the common approach of using

firm revenues deflated by a sector-level price index to measure real ouput, as σyi →∞.18 In that

sense, our aggregation method is strictly more general than the most commonly used one.

16Redding and Weinstein (2020), in a very different exercise, deal with the quality terms by assuming that the
geometric average of product quality across products is time-invariant; our approach, by contrast, is to assume that
they are orthogonal to the instruments we construct, as will be made clear below.

17For example, if no goods are dropped from t− 1 to t but new goods are introduced, then χyit−1,t = 1 > χyit,t−1,
which, since σyi > 1 by assumption, implies a reduction in the price index. This reflects the fact that the utility
function (1) embeds a taste for variety in the goods from a given firm.

18Put another way, as σyi → ∞ our approach would provide theoretical justification for the standard approach

of deflating firm revenues by a sector-level price index. From (1) and (2), limσ
y
i→∞

Ỹit =
∑
j∈Ω

y
it
ϕijtYijt and

limσ
y
i→∞

P̃it = minj∈Ω
y
it

(Pijt/ϕijt). All goods purchased by the consumer have the same quality-adjusted price,

call it P̆t = Pijt/ϕijt ∀ j ∈ Ωyit; goods with higher quality-adjusted prices are not purchased. Then Rit =∑
j∈Ω

y
it
PijtYijt =

∑
j∈Ω

y
it

(Pijt/ϕijt)ϕijtYijt = P̆tỸit. Hence as σyi → ∞, deflating Rit by P̆t yields real output.

Our approach is more general in that it is theoretically justified also for σyi <∞.

11



2.2 Production

On the production side, we assume that real output, as defined above, is a function of capital,

labor, and a firm-level CES materials aggregate, combining in Cobb-Douglas fashion:

Ỹit = M̃βm
it Lβ`it K

βk
it e

ωit+ηi+ξt+εit where M̃it =

 ∑
h∈Ωmit

(αihtMiht)
σmi −1

σm
i


σmi
σm
i
−1

(7)

Here h indexes material inputs, Ωm
it is the set of inputs purchased by the firm, Miht is the quantity

of each material input purchased, Lit is labor, and Kit is capital. We refer to αiht as input quality,

recognizing that it may reflect physical attributes of the inputs or characteristics of the technology

used to combine them in production. It captures any differences across inputs in how much one

physical unit of the input contributes to the input aggregate. The assumption that the production

function is Cobb-Douglas in capital, labor, and materials is standard in the literature. In principle,

our approach could be extended to other functional forms (e.g. translog), although other forms

would require additional instruments. As on the output side, we assume the the firm-specific

elasticity of substitution between inputs is greater than unity, σmi > 1, which ensures that a

firm consumes more of an input that increases in quality. In addition to being standard, this

assumption is consistent with recent evidence at the micro level that intermediate inputs are

typically substitutes (Dhyne et al., 2020b; Peter and Ruane, 2020); also, as discussed below, we

believe that the assumption that inputs are subsitutes is particularly plausible in the subsectors

we focus on.19

In the error term, ωit is a firm-specific “ex ante” productivity shock that firms observe before

choosing inputs but that is unobservable to the econometrician; ηi is a time-invariant firm effect;

ξt is a sector- or economy-level shock; and εit is an “ex post” shock that is revealed after firms

have chosen inputs (and hence is not “transmitted” to input choices). (We may also think of it as

reflecting measurement error.) As is standard, we allow material inputs and labor to be adjustable

in the short run and hence potentially correlated with the ex ante shock, ωit, but assume that

capital can be adjusted only with a lag of one period. We assume that the ex ante and ex post

productivity shocks are uncorrelated with past values of inputs, but we allow for feedback from

current shocks to future input choices (and from the ex ante shock to current choices). In the

19As on the output side, our method remains applicable, although with somewhat less intuitive implications, as
long as σmi > 0. See Appendix A.2.
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language of Wooldridge (2010), we assume that the input choices are sequentially but not strictly

exogenous. In addition, we assume that both ωit and εit are serially uncorrelated. This assumption

on ωit is stronger than usually imposed, but it can be tested with standard methods (Arellano

and Bond, 1991), and we will not reject the null of no serial correlation. Formally, we assume:

E(ωit|ηi,Kit,Kit−1M̃it−1, Lit−1, ωit−1, εit−1...,Ki1, M̃i1, Li1, ωi1, εi1) = 0 (8)

E(εit|ηi,Kit, M̃it, Lit,Kit−1, M̃it−1, Lit−1, ωit−1, εit−1...,Ki1, M̃i1, Li1, ωi1, εi1) = 0

where the conditioning on past values of the shocks implies a lack of serial correlation in the

shocks. Here we assume that the firm effect, ηi, arguably captures within-firm persistence that

might show up as serial correlation in models without fixed effects.20

It is important to note that the quality and variety of both outputs and inputs, represented

by the quality terms ϕijt and αiht and the variety sets Ωy
it and Ωm

it , may be chosen endogenously

by firms. Researchers have proposed a number of frameworks to analyze such choices; see for

instance Kugler and Verhoogen (2012) on quality, and Eckel and Neary (2010), Bernard et al.

(2011) and Mayer et al. (2014) on variety. Here we do not adopt a particular model of how firms

make these choices, nor do we assume that the firm behaves optimally in making them. We need

only that the choices are uncorrelated with our internal and external instruments, discussed in

Subsection 2.4 below.

The derivations of the price and quantity indexes on the input side are analogous to those on

the output (i.e. demand) side. Given the production function (7) (which is also weakly separable,

with homothetic aggregate M̃it), the firm can be thought of as first choosing values of Miht

to minimize the cost of acquiring a given level of the aggregate input, M̃it, and then choosing

optimal values of M̃it, Lit and Kit, given the demand function, (3). Firms are assumed to be

price-takers on input markets. As discussed below, we believe that this assumption is reasonable

in the subsectors we focus on.21 Optimization in the first stage implies that the cost of purchasing

20Proxy-variable methods typically assume that ωit follows a Markov process, which allows for flexible patterns
of serial correlation, but they do not allow for a firm effect, as discussed below.

21Estimation of production functions when producers have oligopsony power in input markets has recently been
considered by Rubens (2020). Although market power in input markets could potentially be accommodated in our
framework, we leave this extension to future work.
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one unit of the materials aggregate, M̃it, is:

W̃it =

 ∑
h∈Ωmit

(
Wiht

αiht

)1−σmi
 1

1−σm
i

(9)

This is the price index that sets W̃itM̃it = Emit , where Emit is the firm’s total expenditures on

material inputs.

As on the output side, the CES assumption allows us to decompose input-price changes in a

convenient way. Let Ωm∗
it be firm i’s common inputs between t − 1 and t (i.e. Ωm

it−1 ∩ Ωm
it ), W̃

∗
it

and M̃∗it be the price and quantity indexes for common inputs, Em∗it be the firm’s expenditures on

common inputs, Smiht be the firm’s expenditure share on input h, among all inputs purchased by

firm i, and Sm∗iht the corresponding share among common inputs.22 Appendix A.2 shows that the

log change in the firm-specific input price level can be expressed as:

ln

(
W̃it

W̃it−1

)
=

∑
h∈Ωm∗it

ψiht ln

(
Wiht

Wiht−1

)
−
∑

h∈Ωm∗it

ψiht ln

(
αiht
αiht−1

)
︸ ︷︷ ︸

ln

(
W̃∗
it

W̃∗
it−1

)
− 1

σmi − 1
ln

(
χmit−1,t

χmit,t−1

)
(10)

where:

ψiht =

(
Sm∗iht−S

m∗
iht−1

lnSm∗iht−lnSm∗iht−1

)
∑

h∈Ωm∗it

(
Sm∗iht−S

m∗
iht−1

lnSm∗iht−lnSm∗iht−1

) , χmit,t−1 =
∑

h∈Ωm∗it

Smiht, χmit−1,t =
∑

h∈Ωm∗it

Smiht−1 (11)

As for output prices, the first term is the log Sato-Vartia observable price change index for common

goods; the second term is a weighted average of changes in input quality; and the third term is

an adjustment for entry and exit of inputs.

As for output quantities, the change in the CES materials quantity aggregate can again be

written as the sum of an observable Sato-Vartia quantity change index and unobservable terms

22That is, Em∗it =
∑
h∈Ωm∗

it
WihtMiht, W̃ ∗it =

[∑
h∈Ωm∗

t,t−1
(Wiht/αiht)

1−σmi
] 1

1−σm
i , M̃∗it =[∑

h∈Ωm∗
t,t−1

(αihtMiht)
1−σmi

] 1
1−σm

i , Sm∗iht = WihtMiht
Em∗
it

for h ∈ Ωm∗it , and Smiht = WihtMiht
Emit

.
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capturing increases in variety and quality:

ln

(
M̃it

M̃it−1

)
=

∑
h∈Ωm∗it

ψiht ln

(
Miht

Miht−1

)
+
∑

h∈Ωm∗it

ψiht ln

(
αiht
αiht−1

)
︸ ︷︷ ︸

ln

(
M̃∗
it

M̃∗
it−1

)
+

σmi
σmi − 1

ln

(
χmit−1,t

χmit,t−1

)
(12)

where M̃∗it is the quantity index for common inputs. This approach again nests the standard

approach of using expenditures deflated by a sector-level input price index as σmi → ∞; see

footnote 18.

2.3 Deriving Estimating Equation

To integrate the CES output and input quantity decompositions (6) and (12) into the production

function, (7), it is convenient to restate the decompositions in levels. Let lower-case letters

represent logs and 4 a change from t− 1 to t. Summing the differences in (6) and (12) over time

within firms, with firm-specific normalizations ỹi0 and m̃i0, we have:

ỹit = ỹi0 +

t∑
τ=1

∑
j∈Ωy∗iτ

δijτ 4 yijτ

︸ ︷︷ ︸
=:ỹSVit

+

t∑
τ=1

∑
j∈Ωy∗iτ

δijτ ln

(
ϕijτ
ϕijτ−1

)
︸ ︷︷ ︸

=:qyit

+

(
σyi

σyi − 1

) t∑
τ=1

ln

(
χyiτ−1,τ

χyiτ,τ−1

)
︸ ︷︷ ︸

=:vyit

(13)

m̃it = m̃i0 +
t∑

τ=1

∑
h∈Ωm∗iτ

ψihτ 4 wihτ︸ ︷︷ ︸
=:m̃SVit

+
t∑

τ=1

∑
h∈Ωm∗iτ

ψihτ ln

(
αihτ
αihτ−1

)
︸ ︷︷ ︸

=:qmit

+

(
σmi

σmi − 1

) t∑
τ=1

ln

(
χmiτ−1,τ

χmiτ,τ−1

)
︸ ︷︷ ︸

=:vmit

where we define the new variables under the underbraces, ỹSVit , qyit, v
y
it, m̃

SV
it , qmit , and vmit , to be

equal to the indicated summations. Note that in defining variables in this way, we set the quality

and variety terms qyit, v
y
it, q

m
it , and vmit to zero in the initial year and include the firm-specific

normalizations as part of the “Sato-Vartia” quantity terms, ỹSVit and m̃SV
it .

Plugging these expressions into the production function, (7), and rearranging, we have:

ỹSVit = βmm̃
SV
it + β``it + βkkit + ηi + ξt + uit (14)
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where:

uit = (βmv
m
it − v

y
it) + (βmq

m
it − q

y
it) + ωit + εit (15)

This equation relates the Sato-Vartia output quantity index to the Sato-Vartia input quantity

index (both observable, modulo the firm-specific normalizations), log capital, log labor, a firm

effect, a year effect, and an error term that reflects variety and quality of outputs and inputs as

well as the “ex ante” and “ex post” productivity shocks.

Writing the production function in this way helps to clarify two issues. The first is that simply

using physical quantities for output and input may be problematic in a setting where quality or

variety vary differently by firm over time, on the output side or the input side. The input choices

m̃SV
it , `it, and kit may be correlated with the unobserved quality and variety terms, qmit , qyit, v

m
it ,

and vyit, generating what we call output- or input-quality bias, or output- or input-variety bias. To

fix ideas, suppose that firms produce a single product using a single material input, in which case

ỹSVit and m̃SV
it simplify to the physical quantities of output and input and the variety terms drop

out. If producing one unit of a higher-quality output requires more physical units of labor, with

all else equal, then there will be a positive correlation between `it and the qyit (and hence a negative

correlation between `it and the −qyit in the error term), generating a negative output-quality bias

in the OLS estimate of β`. Biases may also arise from purely exogenous shocks to product appeal

or input quality, if such shocks affect firms’ input choices — for instance, if a firm’s product

becomes fashionable for reasons unrelated to the firm’s actions but it expands production to take

advantage of the increased demand, or if a supplier improves the quality of a purchased input

without changing the price and this induces the firm to increase output.

Among multi-product, multi-input firms, biases could arise from changes in variety. For

instance, if import-tariff reductions increase the set of input varieties available and induce firms

to increase the variety of inputs purchased, the variety of outputs produced, and total output,

as suggested by Goldberg et al. (2010) and Bas and Paunov (2020), one would expect a positive

correlation between m̃SV
it and vmit and a negative correlation between m̃SV

it and −vyit, generating

offsetting biases with ambiguous net effects. It is important to note that these quality and variety

biases are distinct from transmission bias, and might be present even if one had a perfect proxy

for the ex ante productivity term, ωit.
23

23Note also that including a proxy for input quality alone, as in De Loecker et al. (2016), does not solve all of
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The second issue that equation (14) clarifies is why the scalar monotonicity assumption re-

quired by standard proxy-variable approaches is incompatible with our approach to aggregation.

The leading proxy-variable approaches require a one-to-one relationship between a firm’s under-

lying productivity and either investment or materials demand, conditional on other observables

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; De Loecker, 2011; Doraszelski and Jauman-

dreu, 2013, 2018; Ackerberg et al., 2015; Gandhi et al., 2020) As noted by Ackerberg et al. (2015),

in models with a firm effect (here ηi) in addition to the ex ante productivity term (here ωit), this

assumption is unlikely to hold, since the firm effect introduces a second dimension of heterogene-

ity between firms.24 In our case, we assumed the presence of a firm effect at the outset, in the

production function, (7). But even if we had not, we would have to deal with the firm-specific

normalizations ỹi0 and m̃i0 in (13), which we have folded into the levels of the observable Sato-

Vartia quantity aggregates, ỹSVit and m̃SV
it . We impose a particular normalization in the second

step of our estimation procedure below, but we feel that a strength of our approach is that we

do not need to impose such an assumption in the first step when estimating the coefficients on

materials and labor. We will pursue an approach more in the spirit of the panel-data literature,

in part because it can more easily accommodate the fixed effect.

2.4 Two-Step IV Estimation Procedure

To estimate the production function, (14), we proceed in two steps, each implementing an IV

model. In the first step, we first-difference to remove the firm effect and use lagged levels and

external drivers of input price changes as instruments. We recover estimates of βm and β` from

this step, but we treat βk as a nuisance parameter, in part because we do not believe there is

sufficient signal in the within-firm changes in capital to estimate βk credibly. In the second step,

we incorporate the first-step estimates of βm and β` in the levels equation and use the lagged

difference of capital as an instrument for the level, in the spirit of the System GMM approach

(Arellano and Bover, 1995; Blundell and Bond, 1998, 2000). To be clear about terminology: we

refer the first step as the “differences” step and the second as the “levels” step; in each step, there

is an IV model that has two stages.

the potential problems; there may still be correlation of physical input choices with output quality or with output
or input variety.

24This issue is separate from the concern that firms may face heterogeneous constraints in input markets, which
might break the monotonic relationship between productivity and materials or investment demand (Shenoy, forth-
coming).
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2.4.1 Differences (Step 1)

A common approach to estimating an equation with a firm effect would be to implement a “within”

estimator in which all variables are deviated from firm-specific means. But the within estimator

would require the time-varying firm-specific productivity terms, ωit and εit, to be uncorrelated with

all past and future values of the covariates — strict exogeneity in Wooldridge (2010)’s terminology

— which would be violated if productivity shocks affect future input choices. Instead, we first-

difference to remove the firm effect, yielding an estimator that remains consistent under sequential

exogeneity (which we have assumed in (8)). From (14),

4ỹSVit = βm 4 m̃SV
it + β` 4 `it + βk 4 kit +4ξt +4uit (16)

where:

4uit = (βm 4 vmit −4v
y
it) + (βm 4 qmit −4q

y
it) +4ωit +4εit

Note that in addition to removing the firm effect, ηi, the first-differencing eliminates the firm-

specific normalizations in (13), ỹi0 and m̃i0, from the Sato-Vartia terms, ỹSVit and m̃SV
it . We refer

to (16) as our difference equation.

Ordinary least squares (OLS) estimation of (16) would be subject to the quality and variety

biases discussed above as well as the familiar transmission bias (i.e. firms observe ωit before

choosing the flexible inputs, inducing a positive correlation between 4ωit and 4m̃SV
it and 4`it).

Additionally, in first differences even pre-determined variables will in general be correlated with

the error term: kit, which appears in 4kit, may be correlated with ωit−1 or εit−1, which appear in

4uit. To address these concerns, we seek instruments that are correlated with 4m̃SV
it , 4`it and

4kit and uncorrelated with the error term, 4uit. If uit is serially uncorrelated in levels, as we

have assumed, then uit−2 and further lags are uncorrelated with 4uit and input levels in t−2 and

further back are valid instruments for 4m̃SV
it , 4`it and 4kit. Below we will implement standard

tests for serial correlation from Arellano and Bond (1991) and find that we do not reject the null

hypothesis of no serial correlation.25

25Note that our approach differs from standard System GMM in the assumption on the productivity shocks.
Blundell and Bond (1998, 2000) assume that the ex ante productivity shocks follow an AR(1) process and quasi-
difference to purge the serial correlation prior to estimation. Under the (testable) assumption of no serial correlation,
this quasi-differencing is not necessary.
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A widely recognized concern with using lagged levels as instruments, however, is that they

may be only weakly correlated with current differences (Griliches and Mairesse, 1998; Blundell

and Bond, 1998, 2000; Bun and Windmeijer, 2010; Hayakawa and Qi, 2020).26 Including further

and further lags may exacerbate the weak-instrument problem. Testing for weak instruments is

complicated here by the presence of multiple endogenous covariates and the potential for het-

eroskedastic errors (which we would not feel justified in assuming away). This is a frontier area

of econometric theory and there is no consensus in the literature on the right diagnostic tests to

use in such cases.27 Two tests are commonly reported in practice. Sanderson and Windmeijer

(2016) propose an improved version of a test first suggested by Angrist and Pischke (2009), which

is appropriate for estimation and inference on each of multiple endogenous regressors, as we are

interested in here.28 Also commonly reported is the Kleibergen and Paap (2006) Wald statistic,

an analogue of the Cragg and Donald (1993) statistic applicable in non-homoskedastic settings.29

We will report both the Sanderson-Windmeijer and Kleibergen-Paap Wald statistics below. The

statistics will give reason to be concerned about the weakness of the internal instruments.

Our strategy for strengthening the instrument set is to incorporate external instruments cap-

turing exogenous variation in the prices of materials and labor. To construct the materials-price

instrument, we proceed in two steps, taking advantage of detailed Colombian trade-transactions

data merged with the Colombian manufacturing survey. We first use real-exchange-rate move-

ments to predict import-price movements at the product-year level.30 We then use information

on the product composition of each firm’s imports to aggregate the predictions to the firm-year

level. To ensure that the predicted import index is uncorrelated with uit−1, which appears in

4uit in (16), we run “leave one out” regressions (one for each firm, omitting that firm’s imports)

to predict import-price changes and we use import product composition from t − 2 to do the

26In the setting of cross-country growth regressions, Bazzi and Clemens (2013) and Kraay (2015) show that the
instruments used in difference and system GMM estimators are weak and can suggest misleading inferences. See
also the review by Bun and Sarafidis (2015).

27In a recent state-of-the-art review, Andrews et al. (2019) recommend the test of Montiel Olea and Pflueger
(2013) in cases with a single endogenous regressor, but have no recommendation in cases with multiple endogenous
regressors; see their footnote 4.

28The Sanderson-Windmeijer statistic adjusts for the fact that the endogenous covariates may themselves be
highly correlated. The theoretical justification for it relies on an assumption of homoskedastic errors, but it is
commonly reported even in non-homoskedastic settings.

29Although the Kleibergen and Paap (2006) Wald statistic is sometimes compared to the Stock and Yogo (2005)
critical values (see e.g. Baum et al. (2007)), the validity of this comparison is unclear in the non-homoskedastic
case, since the critical values are calculated under the assumption of homoskedasticity.

30Exchange-rate movements have previously been used as a source of identification in production-function esti-
mation by Park et al. (2010), who use them as a source of variation in demand from export markets.
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aggregation.

To be precise, we begin by defining real exchange rates (RERs) as:

RERot = NERot

(
CPIot
CPICol,t

)
(17)

where o indexes import origins, NERot is the nominal exchange rate (Colombian pesos/foreign

currency), CPIot is the consumer price index (CPI) in the origin, and CPICol,t is the CPI of

Colombia. Defined in this way, a real appreciation in country o is reflected in an increase in

RERot. We consider the top 100 origins by Colombian import volume and label this set O. We

use n to index products defined at the 8-digit trade classification level, which do not map cleanly

to products in the Colombian industrial classification, indexed by j and h above. We exclude

machinery and equipment, which could arguably be considered capital rather than material im-

ports; we also exclude petroleum and other mineral fuels.31 For a particular imported input n, we

calculate an average log RER change separately for each firm in our data, weighting by imports

but leaving out the firm’s own imports:

4rernt,−i =
∑
o∈O

ζont−1,−i 4 ln(RERot), where ζont−1,−i =
Iont−1,−i∑
o∈O Iont−1,−i

(18)

Here Iont−1,−i is the “leave-one-out” value of imports of product n from origin o in period t−1 for

all firms except i. We then use these product-level average real-exchange-rate changes to predict

import price changes at the product-year level, using the regression:

4wimpnt,−i = γst 4 rernt,−i + ρst + ηnt (19)

where 4wimpnt,−i is the change in import n’s log import price (averaged across origins using import

weights) for imports of all firms except i,32 and ρst is a sector-year effect. In our preferred

specification, s indexes two digit trade sectors and we allow the coefficient on the exchange-

rate term to vary by two-digit trade sector and year.33 We run this leave-one-out regression

31That is, we exclude Harmonized System 2-digit categories 27, 84 and 85.
32That is, 4wimpnt,−i =

∑
o∈O ζont−1,−i 4 wimpont,−i, where ζont−1,−i is defined as in (18).

33In principle, we could include lags of the average real-exchange-rate changes in (19). But consistent with the
literature on exchange-rate pass-through (see e.g. Campa and Goldberg (2005)), we have found that the effect of
RER changes on import prices decays relatively quickly, within one year, and including further lags has little effect
on the strength of our instrument, so we do not include them here.
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separately for each firm i (using data from all firms in the customs data that can be linked to the

manufacturing survey, not just those in the rubber and plastics sectors) and recover the predicted

values, 4ŵimpnt,−i.

We then use firm i’s product-level import shares as weights in constructing the average pre-

dicted import price change at the firm level:

4ŵimpit =
∑
n∈N

θint−2 4 ŵimpnt,−i, where θint−2 =
Iint−2∑
n∈N Iint−2

(20)

Here Iint−2 is imports by firm i of product n in period t − 2 and N is the set of all imported

products. For firms that did not import in t − 2, we set 4ŵimpit = 0. This average predicted

import price change at the firm level, 4ŵimpit , is our external instrument for 4m̃SV
it in (16).34

To construct an external instrument for labor, we exploit the fact that the minimum wage

in Colombia is high relative to the wage distribution and that it rose sharply over our sample

period, especially in 1994-1999 and 2003-2009. (See Subsection 3.3 for institutional background.)

We first construct a measure of the “bite” of the minimum wage — how binding it is expected to

be on a particular firm — defined as:

Bit =
MWt

W `
it

(21)

where MWt is the national minimum wage (defined for monthly earnings and annualized multi-

plying by 12) and W `
it is firm-level average annual earnings per worker for permanent workers,

calculated as the firm-level annual wage bill divided by average employment. Defined in this way,

Bit < 1 and the closer the firm average wage is to the national minimum wage, the larger is Bit.

We interact this measure of bite with the change in the national minimum wage, using bite from

t− 2 (again to avoid correlation with uit−1, which appears in 4uit in (16)):

4zit = Bit−2 ∗ 4 ln(MWt) (22)

This predicted wage change, 4zit, serves as an instrument for 4`it in (16). Other studies that

have followed this strategy of interacting minimum wage changes with differences in their bite

include Card (1992), Stewart (2002), and Cengiz et al. (2019).

34Exchange-rate movements may also affect export prices. We address this concern by constructing an analogous
predicted export price index and including it as an additional covariate; see Section 5.2 below.
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It is well known that the estimation of the coefficient on capital is problematic in first-

differenced models, and indeed in any model that includes a firm effect. For example, in a

first-differenced model using lagged levels as instruments, Ornaghi (2006) finds a negative co-

efficient on capital. Using a within estimator, Söderbom and Teal (2004) also find a negative

relationship. It is common to attribute low estimates of the capital coefficient to measurement

error in capital, the effect of which is exacerbated by transformations to remove the firm effect

(Griliches and Mairesse, 1998; Ackerberg et al., 2015). In the Colombian manufacturing census,

we do not observe capital utilization, and it seems likely that the capital measure we are able

to construct, while standard, is a very noisy measure of capital in use. It may also be that in

the presence of adjustment costs for capital, with firms investing in a lumpy way and the returns

to capital accruing over long periods, changes in capital are not likely to show up immediately

in changes in output (Griliches and Mairesse, 1998). Griliches and Mairesse (1998) recommend

looking at longer differences, to reduce the role of noisy year-to-year fluctuations. But as noted

above (footnote 33), the real-exchange-rate fluctuations that are the main source of exogenous

variation in our predicted-import-price instrument have an effect on prices only in the relatively

short term, typically 1-2 quarters, and the instrument has little explanatory power over longer pe-

riods. If we had an external instrument that generated large changes in capital on a year-by-year

basis, it would help to improve the estimation of the capital coefficient, but we have not found

such an instrument. In light of these issues, we conclude that we do not have sufficient signal in

year-on-year capital changes to estimate βk well in first-differences. In the first step, we focus on

estimating βm and β` and treat βk as a nuisance parameter. In the next subsection, we present

a different strategy for estimating βk, in levels, incorporating “between” variation.

The key identifying assumptions for this first step, in differences, are that the instruments —

the external instruments, 4ŵimpit and 4zit, and the internal instruments, m̃SV
it−2, `it−2, and kit−2

— are uncorrelated with the error term in (16), 4uit. Under these assumptions, we can recover

consistent estimates of output elasticities with respect to materials and labor, β̂m and β̂`. If one

is only interested in β̂m and/or β̂`, for instance to use in constructing markups in the method of

Hall (1986) and De Loecker and Warzynski (2012), then one can stop at this step.
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2.4.2 Levels (Step 2)

In the second step, we proceed in the broad spirit of System GMM (Arellano and Bover, 1995;

Blundell and Bond, 1998, 2000) in using lagged differences as instruments in a levels equation.35

The System GMM assumption that lagged differences are uncorrelated with the firm effect is

equivalent to assuming that the correlation of the level of the inputs and the firm effect is constant

over time, which Bun and Sarafidis (2015) refer to as the “constant correlated effects” assumption.

Here, because of the availability of the external instruments in Step 1, we need this assumption

only for capital, not for materials or labor. That is, we assume:

E(kitηi) = ci (23)

for some (potentially firm-specific) constant ci. This assumption rules out correlation between a

firm’s time-invariant productivity and the evolution of its capital stock over time and is clearly

restrictive. But we believe that it is plausible in our setting, where much of the within-firm

variation appears to be due to measurement error.36

To proceed, we also need to take a stand on the firm-specific normalizations, m̃i0 and ỹi0, in

(13). This amounts to choosing a base year for the firm-specific output and input price indexes,

P̃it and W̃it. Here we assume that these indexes are equal to unity in the first year that a firm

appears in our data. In logs, since rit = ỹit + p̃it in every period, setting p̃i0 = 0 implies ỹi0 = ri0;

that is, the log output quantity index in a firm’s first year in the panel is set equal to log revenues.

Similarly, on the input side, setting w̃i0 = 0 implies m̃i0 = ei0; the log input quantity index is

set equal to log expenditures. These choices for the firm-specific normalizations preserve the

cross-sectional variation in sales and expenditures present in the initial year for each firm.

Using β̂m and β̂` from Step 1 and recalling that ỹi0 and m̃i0 are included in the definitions of

ỹSVit and m̃SV
it , equation (14) can be rewritten as:

ỹSVit − β̂mm̃SV
it − β̂``it = βkkit + ξt + ŭit (24)

35Despite this similarity, our approach differs from Blundell and Bond (2000) in that we use a different set of
instruments, we do not allow for for serial correlation in ex ante productivity (and hence do not quasi-difference to
eliminate it), and we do not estimate the difference and levels equations simultaneously by GMM. See also Section
6.

36Assumption (23) would also be justified if current investment were a function of current and past innovations
in productivity, i.e. ωit, ωit−1, ..., ωi0, but not the fixed effect, ηi.
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where the error term now includes the firm effect, ηi, and terms arising from estimation error in

the first-step estimates:

ŭit = ηi + (βm − β̂m)m̃SV
it + (β` − β̂`)`it + (βmv

m
it − v

y
it) + (βmq

m
it − q

y
it) + ωit + εit

We assume that the lagged difference in capital, 4kit−1, is uncorrelated with the quality and

variety terms, qmit , qyit, v
m
it and vyit. Under this assumption and the constant correlated effects

assumption, (23), 4kit−1 is a valid instrument for kit in (24).37 Although the first-step estimation

errors in β̂m and β̂` show up in ŭit, the consistency of the first-step estimates implies that they

will not render the second-step estimates inconsistent.38 They may, however, need to be taken

into account in estimating the standard error on β̂k. As explained in more detail in Appendix

A.3, if there is no correlation between 4kit−1 and m̃SV
it or `it, then no correction of the standard

errors is required, but if there is correlation, then a correction needs to be applied. Below we

report both the uncorrected and the corrected standard errors.

If the model is specified correctly, then estimating it in two steps potentially involves a loss

of efficiency relative to simultaneous GMM estimation. But as recently pointed out by Kripfganz

and Schwarz (2019) in a related context, an advantage of the two-step approach is that our first-

step estimates of βm and β` are robust to mis-specification in the second stage, and in particular

to violations of the constant-correlated-effects assumption, (23).

3 Data, Institutional Background, and Descriptive Statistics

This section describes the main datasets we use, reviews the institutional background on the

minimum wage in Colombia, explains the motivation for our choice of subsectors, and presents

descriptive statistics for our sample. Additional details are in Appendix B.

37We also present results using 4kit−2 as the instrument for kit.
38This follows from the facts that plimI→∞

1
I

∑
i4kit−1

[
(βm − β̂m)m̃SV

it + (β` − β̂`)`it
]

=

plimI→∞
1
I
(4kit−1m̃

SV
it ) · plimI→∞(βm − β̂m) + plimI→∞

1
I
(4kit−1`it) · plimI→∞(β` − β̂`) (where I is the total

number of firms) and, if the first-step estimates are consistent, then plimI→∞(βm − β̂m) = plimI→∞(β` − β̂`) = 0.
See Section 4 of Kripfganz and Schwarz (2019) and in particular their footnote 19.
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3.1 Annual Manufacturing Survey

We use information on sales, employment, wages, capital stock, inputs and outputs from the En-

cuesta Anual Manufacturera (EAM, Annual Manufacturing Survey), collected by the Colombian

statistical agency, DANE. Data are reported at the plant level, and we aggregate them to the firm

level — the level at which we observe imports and exports from trade transactions records (see

below). In the sectors we focus on, nearly all firms have just one plant. We focus on data from

the period 1994-2009.39 Given that we will need at least two lags in our baseline specifications,

our main period of analysis is 1996-2009.

The survey contains information on the values and physical quantities of all outputs produced

and inputs consumed by each plant at the level of eight-digit product categories.40 Because the

survey is used to construct producer price indexes, DANE pays careful attention to the physical

units of measurement for each product, and a given product is always reported using the same

units. We calculate product prices at the firm level as unit values: Pijt = Rijt/Yijt, where Rijt is

the value of product k produced by firm i in year t and Yijt the corresponding quantity. Input

prices are calculated analogously. Further details, including on the construction of capital stock,

which uses a standard perpetual-inventory method, are in Appendix B.1. The fact that the survey

contains, in principle, information on all material inputs is important because it responds to a

criticism of IV methods, for instance by Ackerberg et al. (2015), that the exclusion restrictions

for input-price instruments are likely to be violated if one observes only a subset of inputs.

3.2 Customs Records and Exchange Rates

The customs data contain information from the administrative records filled out by every Colom-

bian importer or exporter for each international transaction, collected by the Colombian customs

agency, DIAN. Information is available at the level of the firm, product code (8 digit), year, and

country of origin (for imports) or destination (for exports). Imports and exports by the firm

are merged with the EAM manufacturing data using firm identifiers according to the procedures

established by DANE. Further details are in Appendix B.2.

39Prior to 1994, the EAM used different plant identifiers and it is often difficult to track plants over time.
Although we use data from 1992-1993 when available in constructing firm-level capital stock, we do not focus on
these years in the main analysis. Using procedures established by DANE to protect the confidentiality of the data,
it is possible to link the customs data (see below) to the EAM only until 2009.

40The survey also reports information on outputs sold and inputs purchased, but we use the information on
production and consumption to avoid timing issues that arise because firms hold inventories.
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To calculate real exchange rates (RERs) by trading partner, we use nominal exchange rates

and consumer price indexes (CPIs) from the International Financial Statistics (IFS) of the Inter-

national Monetary Fund.41 Appendix Figure A1 depicts the movements in real exchange rates

(defined such that an increase reflects a real appreciation in the trading partner) for the 12 coun-

tries from which rubber and plastics producers purchased the most imports during the period

of our analysis. We see that several of the most important import origins had significant RER

fluctuations. Venezuela and Mexico, both major oil producers, had large real appreciations in

1995-2000 and large real depreciations subsequently. Indonesia suffered a major crisis accompa-

nied by sharp real devaluation in 1997 (as did Argentina (not pictured) in 2001). Even the US

and Eurozone countries, which were less volatile overall, experienced non-trivial variation in the

RER relative to Colombia.

3.3 Minimum Wage

Despite wide variation in local labor market conditions, Colombia has a single national minimum

wage. Over our study period, it was one of the highest in Latin America as a share of the

median wage, and it increased significantly in real terms (Maloney and Nuñez Mendez, 2004;

Mondragón-Vélez et al., 2010). As required by the Colombian constitution, increases for the

coming year are negotiated in December by a tripartite commission including representatives

from government, employer associations, and labor organizations. Prior to 1999, the target was

commonly understood to be predicted inflation plus predicted productivity growth (Maloney and

Nuñez Mendez, 2004; Hofstetter, 2006). In 1999, because of a recession, predicted inflation greatly

exceeded actual inflation and the real value of the minimum wage increased by 7%. In addition,

the Constitutional Court in Colombia ruled in 1999 that the minimum wage increase could not

be lower than the previous year’s inflation. As a result, the real value of the minimum wage

continued to rise after 2000, remaining above 90% of the median wage through the end of our

study period (Mondragón-Vélez et al., 2010). Appendix Figure A2 shows the steady increase

of the real minimum wage over our study period. To illustrate the bite of the minimum wage,

Appendix Figure A3 plots a histogram of real wages in 1998 for individuals who report working in

firms with 10 or more employees in manufacturing in a Colombian household survey, the Encuesta

Nacional de Hogares. The solid and dashed vertical lines represent the 1998 and 1999 minimum

41For a few countries with no information in the IFS, we gathered data directly from their central banks.
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wages, respectively. We see that there was extensive bunching of wages at the minimum in 1998,

and that a large share of manufacturing workers was directly affected by the 1999 minimum wage

increase. The minimum wage is often used to index the wages of employees who earn above the

minimum; as a consequence, increases in the real minimum wage are likely to have an effect on

wages throughout the distribution (Mondragón-Vélez et al., 2010). Researchers have previously

found disemployment effects of the minimum wage in Colombia, in contrast to several other

countries in the region (Bell, 1997; Maloney and Nuñez Mendez, 2004); below we will also find

negative employment effects.

3.4 Choice of Subsectors and Descriptive Statistics

Our method is most applicable in industries that meet several criteria. First, the ability to

accommodate endogenous quality and variety choices is most valuable in sectors producing dif-

ferentiated products, particularly those with substantial quality variation. Second, given that we

assume that firms are price-takers in input markets, our method is most applicable in industries in

which inputs, although they may differ in quality, are relatively non-specialized and substitutable

within quality categories. Third, for our instrument for materials to be relevant, a substantial

share of inputs in the industry must be imported, such that real-exchange-rate fluctuations have

a significant effect on the input prices faced by firms.

In choosing subsectors that fit these criteria, we face a familiar trade-off. On one hand, we

would like sample sizes to be as large as possible in order to increase the precision of our estimates.

This clearly matters in our setting where the weakness of instruments is a concern. On the other

hand, the wider the net that we cast, the more heterogeneous the included firms are likely to be.

This trade-off is well recognized in the literature; see for instance the discussion in Dhyne et al.

(2020a, Sec. 4.3). The issue is particularly salient because, as is standard in the literature, we

will treat all firms in a single broad sector as having the same production-function coefficients.

Our approach in this paper is to focus on firms producing rubber and plastic products. These

subsectors are adjacent in the ISIC revision 2 classification (with 3-digit codes 355 and 356,

respectively) and are often classified together in a 2-digit sector, as for instance in Sector 36

(“Rubber and Plastic Products”) of the U.N. Central Product Classification (CPC). Table 1

reports their main 8-digit outputs. For rubber, the main product is tires of different sorts. These

can be understood to be differentiated products: they are sold under brand names — Goodyear

27



and Michelin tires are produced in Colombia, for instance — and often for fairly specialized uses.

For plastics, there is less concentration on a single type of product; output is distributed across

various types of tubing, bags, sheets, films, and containers. But again, the products of the sector

are typically differentiated and often targeted for specialized uses.

By contrast, the inputs of both subsectors can be viewed as commodities, or at least commodity-

like — highly substitutable across suppliers even if they have quality differences. Table 2 reports

the main 8-digit inputs. For rubber, the most important input is natural latex, from the bark

of rubber trees. The second-most important input category is “rare metals in primary forms”

(CPC product code 3423112) which includes carbon black, a form of carbon used as a filler in

tires.42 For the plastics subsector, the most important inputs are raw forms of different common

plastics — polyethylene (PET), polypropylene (PP), polyvinyl chloride (PVC), polystyrene, and

others — often purchased in the form of pellets. Although the pellets may vary in their chemical

properties, these differences are typically noted on the packaging. Within a given chemical speci-

fication, pellets from different producers and origin countries are typically considered to be highly

substitutable. There may be other dimensions of supply relationships that cannot be observed ex

ante, for instance timeliness of delivery or willingness of supplier to extend trade credit. But to

a first approximation we believe it is reasonable to treat the main inputs in rubber and plastics

as highly substitutable, with observable quality differences.

As is evident in Table 2, a large share of inputs in both subsectors is imported. In rubber

products, almost all natural latex is imported, as is a substantial share of carbon black and other

inputs. In plastics, a majority of PET and 20-25% of PVC and polystyrene are imported. These

import shares are from the EAM data and hence represent shares of inputs imported directly

by firms. To the extent that firms purchase imported goods from local intermediaries, they

understate the true import shares of the inputs. Both rubber and plastics are among the more

import-intensive 3-digit subsectors in the EAM data.

In short, because both rubber and plastics products producers use highly substitutable inputs,

a large share of which are imported, to produce horizontally and vertically differentiated products,

we believe that they are well-suited to our method.

In selecting the estimation sample, we require that a firm have complete data on capital,

42The 5-digit product code 32431, harmonized at the international level, includes “inorganic oxygen compounds
of boron, silicon and carbon.” The final two digits of the CPC product code are Colombia-specific. We have
confirmed in the firm-level imports data (using an alternative 8-digit product classification) that the main input in
this category is carbon black and other forms of carbon.
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labor, materials, and outputs for at least six consecutive years. This requirement is helpful to

ensure that the perpetual-inventory method generates a sensible measure of capital stock. It

also ensures that our sample of firms does not change as we modify the number of lags required

in different specifications. Given that the EAM data are available beginning in 1994 and that

in all specifications we will need at least two lags, our sample covers the years 1996-2009. We

are left with 362 firms in an unbalanced panel, with 11.73 observations per firm on average.

Table 3 presents summary statistics on this baseline sample. We see that the two subsectors are

comparable on many dimensions. Rubber firms spend a large share of expenditures on imports

and earn a larger share of revenues from exports, but employment averages about 100 in both

subsectors and wages and output are similar.

To explore the robustness of our results to the definition of the subsectors of interest, in

the appendix we will report results for two alternative samples. In the first, we remove rubber

products and focus exclusively on plastics, the larger of the two subsectors. In the second, we keep

both rubber and plastics and add glass products (ISIC rev. 2 subsector 362), a subsector that

also arguably satisfies the criteria of relatively substitutable inputs, high imported input share,

and differentiated outputs. Descriptive statistics on the glass products subsector are reported in

Appendix Tables A1-A2.

4 Baseline Results

This section reports the results of the estimation strategy laid out in Section 2. For comparison

purposes, we begin by presenting the “naive” OLS and first-difference (FD) results, and then

move on to our two-step IV (TSIV) method.

4.1 “Naive” OLS and FD Models

Panel A of Table 4 presents estimates using sales as the measure of output and material expendi-

tures as the measure of input use, with both deflated by sector-level deflators. The OLS estimates

in Columns 1 and 2, without and with year effects respectively, appear to be reasonable, and are

roughly consistent with constant returns to scale, as is typically expected (see e.g. Bartelsman

and Doms (2000)). Columns 3 and 4 report first-difference (FD) estimates, corresponding to

equation (16) without instruments. Relative to the OLS estimates, the materials coefficients are
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significantly lower, the labor coefficients remain roughly unchanged, and, strikingly, the capital

coefficients drop almost to zero. The latter fact illustrates a point made above, that transforma-

tions to remove firm effects lead to severe attenuation of the capital coefficient; this problem is

not specific to our TSIV method.

Panel B of Table 4 again report OLS and FD estimates, but using the Sato-Vartia quantity

aggregates for output and materials. In Columns 1 and 2, we have imposed the firm-specific

normalizations for ỹi0 and m̃i0 discussed in Section 2.4.2 above, effectively using each firm’s first

year in the unbalanced panel as the base year for the firm-specific output and input deflators.

Overall, we see significant differences in the OLS estimates — in particular, deflating at the

firm level reduces the OLS materials coefficient and raises the capital coefficient — but the FD

estimates in Columns 3 and 4 are quite similar to those using sales and expenditures in Panel A.

4.2 Differences (Step 1) Results

In this step, we estimate our difference equation (16) using instruments for the changes in input

choices. Table 5 reports the first stage for different sets of instruments. Columns 1-3 use only

internal instruments, and in particular only lagged levels of inputs from period t−2. The coefficient

estimates are plausible, with lagged levels negatively associated with current changes. But the

instruments are weak: the Sanderson and Windmeijer (2016) (SW) F-statistics are below the rule-

of-thumb level of 10 (as are the conventional F-statistics for materials and labor), and although the

Kleibergen-Paap (KP) LM test easily rejects the null of underidentification, the KP Wald statistic

for weak instruments is below 1. In Appendix Table A3, we show that this weak instrument issue

is not resolved by including further lags as instruments in a GMM model.43

To improve the explanatory power of the first stage of this step, we turn instead to our

external instruments. As described in Subsection 2.4.1 above, the first step in the construction

of the firm-level predicted import-price index, 4ŵimpit from (20), is to estimate the relationship

between RER movements and import prices given by (19), leaving out the data from one firm at

a time. (In running these regressions, we include all firms in the DIAN imports data that can

43Appendix Table A3 reports results from GMM estimation of our difference equation (16), where further lags
have been added “GMM-style” (Holtz-Eakin et al., 1988; Roodman, 2009), using available lags and allowing separate
coefficients in each period. Lags are included just to t − 2 in Column 1, to t − 3 in Column 2, and to the firm’s
initial year in Column 3. The Kleibergen-Paap Wald statistic remains below 2 and the Sanderson-Windmeijer F
statistics are all below 3.5. However, the materials and labor coefficient estimates are similar to those using our
TSIV procedure presented below.
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be linked to the EAM manufacturing data, not just those in the rubber and plastics subsectors.)

This generates 362 sets of coefficient estimates, one for each firm in our sample, where each set

contains a separate coefficient for each sector-year. In Appendix Figure A4, we report sector-level

average coefficients, averaging across firms and across years (with standard errors also averaged

across firms and years). Although there is some heterogeneity, in the majority of sectors (and on

average across sectors) import prices are positively related to RER movements, as expected.

Columns 4-6 of Table 5 report the first-stage estimates including the two external instruments

— the predicted change in import price, 4ŵimpint from (20), and the predicted wage change instru-

ment, 4zit from (22) — and one internal instrument, the lagged level of capital from t− 2. The

coefficient estimates broadly conform to our expectations. In particular, the predicted import

price change is significantly negatively related to the change in the material quantity aggregate

and the predicted wage change is significantly negatively related to the change in employment. In

the latter case, the predicted wage change is also negatively related to the materials and capital

changes. The instruments are somewhat stronger than in the internal-instruments-only model

in Columns 1-3, but both the SW F-statistic for materials and labor and the KP Wald statistic

continue to warrant concern about the weakness of the instruments.

Our preferred specification combines the three internal instruments from t−2 and the external

instruments. The corresponding first stage is reported in Columns 7-9 of Table 5. The coefficient

estimates are similar to those in the other columns but the strength of the instrument set has

improved. The SW F-statistic is above the rule-of-thumb level of 10 for labor and capital and

the KP Wald statistic, while still somewhat low at 3.363, is noticeably larger than in the other

columns. The concern about the weakness of instruments remains, but it has been mitigated by

the inclusion of the external instruments.

Table 6 presents the second-stage estimates for the three instrument sets in Table 5. In the

first two columns, the coefficients on materials and labor are imprecisely estimated and change

markedly across columns, as one might expect given the weakness of the instruments in these

specifications. In our preferred specification in Column 3, by contrast, the materials and labor

coefficients are more precisely estimated and are of plausible magnitudes, .38 and .40 respectively.

The labor coefficient is substantially larger than, and the materials coefficient very similar to,

the corresponding FD estimates in Table 4, Panel B, Columns 3-4. The difference in the labor

coefficient is consistent with the presence of an output-quality bias discussed above: if producing
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higher-quality output requires more labor, then we would expect a positive correlation between

4`it and 4qyit in (16), generating a negative bias in OLS and FD estimates of β`, which our

approach would correct.44

As previewed above, the capital coefficient is implausibly low in this specification. The point

estimate is in fact negative, although the confidence interval allows for positive values of roughly

the magnitude of the OLS estimate in Columns 3-4 of Table 4, Panel A. We believe that the

reason for the erratic estimate is that most of the genuine variation in capital stock is between

rather than within firms, and that once first-differencing removes the firm effect, much of the

remaining within-firm variation is due to measurement error. In Step 2 below, using the levels

equation, we will use the variation between firms to arrive at a more plausible point estimate for

the capital coefficient.

Given that the SW F-statistic for materials and the KP Wald statistic are still somewhat low

in our preferred specification, we explore the robustness of the estimates in two ways. First, we

report weak-instrument-robust confidence intervals. The econometric literature has not reached

consensus on the best method for estimating these intervals, especially in the non-homoskedastic

case. Here we follow the approach of Andrews (2016, 2018), which uses a statistic based on a linear

combination (LC) of the K statistic of Kleibergen (2005) and the S statistic of Stock and Wright

(2000).45 We treat βk as a nuisance parameter (without assuming it is strongly identified); the

confidence intervals for βm and β` are calculated using a projection method due to Chaudhuri and

Zivot (2011). These intervals are reported in Column 3 of Table 5. The intervals are centered at

the reported point estimates and allow us to reject the nulls that βm = 0 and β` = 0 comfortably at

the 95% level. Second, to further probe robustness, we estimate the Column 3 specification using

limited-information maximum likelihood (LIML), which has been found to be more robust to weak

instruments than IV (Stock et al., 2002; Angrist and Pischke, 2009). The Andrews LC robust

confidence intervals, reported in Column 4, are somewhat larger, but the coefficient estimates are

nearly identical to those in Column 3, which is reassuring. While it would be preferable to have

stronger instruments, we interpret these results as indicating that our first-step IV estimates of

44Another possibility is that measurement error in labor generated attenuation bias in the FD estimate, which
our procedure removes.

45In practice, the confidence region is found by using this linear combination (referred to as the LC statistic)
to test the null hypothesis at each point on a grid roughly spanning the parameter space; the confidence region is
then the set of points at which the null cannot be rejected. The LC statistic provides more powerful tests than
the K or S statistics alone under some circumstances. Conveniently, this procedure is implemented in Stata by the
twostepweakiv command (Sun, 2018).
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βm and β` are robust to weak-instrument concerns.

4.3 Levels (Step 2) Results

We now turn to the second step of our TSIV procedure. We consider the levels equation, (24),

where we plug in the difference equation (Step 1) estimates, β̂m and β̂`, on the left-hand side.

Panel A of Table 7 reports the first stage of the IV procedure for this step. Our preferred

specification, using 4kit−1 as the instrument for kit appears in Column 1. To check robustness,

we also report results using4kit−2 as the instrument in Column 2. In neither case is there a weak-

instrument concern: the Kleibergen-Papp Wald statistic is above 36 in both cases.46 Although

the R-squared of the first-stage regression is low, the first-stage coefficient is .67 in both columns

and highly significant.

Panel B of Table 7 reports the corresponding second stage. Columns 1 and 2 correspond to the

same Columns in Panel A, with 4kit−1 and 4kit−2 as instruments, respectively. For comparison

purposes, Column 3 reports the OLS estimate, without instrumenting kit. Below each estimate,

we report the uncorrected standard errors in parentheses and the corrected standard errors in

brackets. As noted in Subsection 2.4.2, the uncorrected standard errors are appropriate in the

special case that the instrument is uncorrelated with m̃SV
it and `it. Otherwise, the corrected

standard errors are the appropriate ones. It is important to acknowledge that with the corrected

standard errors, the confidence intervals in both columns are wide and we cannot reject the null

that βk = 0 at conventional levels.

Despite the large standard errors following the correction, we consider these results to be

reassuring. The point estimate in our preferred (Column 1) specification, .20, is plausible, and

(together with the first-step estimates of β̂m and β̂`, .38 and .40) indicates that that returns to

scale are very nearly constant, as is generally expected (Bartelsman and Doms, 2000).47 While

one would of course prefer to have a more precise estimate of βk, we have more confidence in the

estimate than in the close-to-zero estimates from the naive first-differences models in Columns

3-4 of Panels A and B of Table 4 or the negative estimates from the Step 1 difference equation in

Table 6.

46The Kleibergen-Papp Wald statistic and the Sanderson-Windmeijer F statistic coincide in cases with a single
endogenous covariate.

47If we instead use the Column 2 estimate of .29, the materials, labor and capital coefficients sum to 1.07 but
this is not statistically significantly different from 1.
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It is notable that our TSIV estimates of .38, .40, and .20 for βm, β`, and βk are, in the end,

quite similar to (and not statistically different from) the naive OLS results using our input and

output quantity aggregates in Columns 1-2 of Table 4, Panel B. One might reasonably ask what

has been gained by going through our new procedure. We note that it was by no means obvious

at the beginning that the TSIV estimates would be so similar to the OLS-in-levels estimates. The

labor and capital coefficients drop after first-differencing to remove the firm effect, and then rise

again with our procedure. Although many explanations are possible, this pattern is consistent

with the hypothesis that there are two offsetting biases in the naive OLS results: a transmission

bias due to the firm effect, ηi, and a quality bias due to greater use of labor for higher-quality

outputs. While these two biases may offset in the current setting, they may not always, and

it is potentially quite useful to have a method that can address both. Comparing to the naive

OLS estimates using sales and purchases in Columns 1-2 of Table 4, the fact that the materials

coefficient is significantly smaller when using the quantity aggregates, both in the OLS estimates

in Columns 5-6 of Table 4 and our TSIV estimates, underlines the importance of having access

to quantity information on inputs and outputs.

5 Robustness

5.1 Alternative Aggregators

Our within-firm CES assumptions are convenient for showing theoretically how quality and va-

riety differences may bias estimates of output elasticities, but they are admittedly restrictive. It

is natural to ask whether our particular functional-form assumptions are driving our results. It

turns out that the empirical patterns are robust to using other common aggregators to aggregate

from the firm-product to the firm level: a Tornqvist index, a Paasche index, and a Laspeyres

index. Appendix Tables A4-A6 report estimates analogous to Tables 5-7 using these alternative

aggregators and the combination of external and internal instruments. The results are qualita-

tively similar. The point estimates display small differences from our baseline estimates — the

Tornqvist materials coefficient is larger, the Paasche labor coefficient is smaller, and the Laspeyres

capital coefficient is smaller — but these differences are not statistically significant. Using the

weak-instrument-robust confidence intervals, we see that the Laspeyres materials coefficient is not

significantly different from zero at the 95% level, but it is significant at the 90% level. Overall,
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these results suggest that the empirical patterns are not particularly sensitive to the functional

form of the aggregator that we use.

5.2 Adding Predicted Export Price Index

Changes in real exchange rates in export destinations may affect export prices and how much

firms sell in those destinations, in addition to the prices of imports. If export destinations are

correlated with import origins at the market level and individual-firm level in Colombia, that

could generate a correlation between our predicted import price index, 4ŵimpit , and the error term,

4uit. To address this concern, we construct a predicted export price index, 4ŵexpit , analogous

to the predicted import price index, and include it as a covariate. We follow the same steps as

for constructing the predicted import price index: we generate leave-one-out estimates of export

price changes and then average these using the composition of firms’ export baskets. In Appendix

Tables A7-A8, this predicted export price index is included as an additional covariate. The results

are very similar to our baseline estimates. The 95% weak-instrument-robust confidence interval

for the materials coefficient includes zero, but we can still reject the null that βm = 0 at 90%

confidence. The basic patterns are robust to including the export price control.

5.3 Alternative Samples

As discussed in Subsection 3.4, in choosing which subsectors to focus on we have faced a trade-off

between increasing sample size and reducing cross-firm heterogeneity. To explore this trade-off

further, we present estimates for two additional samples. In the first, we include only producers

of plastic products (ISIC rev. 2 code 356). In the second, we add another subsector that also,

arguably, uses relatively homogeneous inputs, produces differentiated outputs, and imports a

substantial share of inputs: producers of glass products (ISIC rev. 2 code 362).48 Appendix

Tables A9-A11 report the estimates for the alternative samples. Unsurprisingly, the precision of

the estimates is increasing in sample size. The weak-instrument statistics signal greater reason for

concern in the plastics-only sample, and somewhat less reason in the combined rubber, plastics,

and glass sample. But overall, the patterns are similar to the sample with rubber and plastics

producers in our baseline estimates.

48Recall that Appendix Tables A1-A2 report summary statistics for glass products.
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6 Comparison to Output Elasticities from Other Methods

This section compares our output-elasticity estimates to those of other commonly used methods

applied in our sample, using log sales and log expenditures rather than our Sato-Vartia quantity

indexes. As noted above, our approach is perhaps closest in spirit to System GMM (Arellano and

Bover, 1995; Blundell and Bond, 1998, 2000). The standard System GMM set-up has a Cobb-

Douglas production function and a firm effect, as we do, but it assumes the ex ante component

of productivity (here ωit) follows an AR(1) process. After quasi-differencing to remove the serial

correlation in the error, the main estimating equation contains a lagged dependent variable as

well as lags of covariates. Difference and levels equations are then estimated simultaneously.

Table 8 presents the results from applying standard System GMM in our baseline sample. We

include time fixed effects and use the “two-step” procedure described in Roodman (2009), using

the initial weighting matrix defined in Doornik et al. (2012) and implementing the Windmeijer

(2005) finite-sample correction for the resulting covariance matrix.49 The coefficients on contem-

poraneous log expenditures, log labor, and log capital are estimates of the Cobb-Douglas output

elasticities, corresponding to our βm, β`, and βk.
50 The columns differ in the number of lags of

the covariates in levels that are included in the difference equation, with lags just from t − 2 in

Column 1, from t− 2 and t− 3 in Column 2, and from all available periods starting from t− 2 in

Column 3. The instruments are included “GMM-style,” effectively interacted with year dummies

(Holtz-Eakin et al., 1988; Roodman, 2009). In the corresponding levels equations, we include

the first lags of the first-differenced covariates as instruments.51 To gauge the strength of the

instruments, we follow Bazzi and Clemens (2013) and Kraay (2015) in reporting weak-instrument

diagnostics separately for the differences and levels equations in Appendix Table A12. In the

differences equation, the number of instruments the rises quickly (given that lags from different

years are considered different instruments), from 56 in Column 1 to 420 in Column 3. The set of

instruments appears to be weak, with the Kleibergen-Paap Wald test statistic below 2 and the

Sanderson-Windmeijer F-statistics below 2 for contemporaneous labor and capital, and below 3

49In particular, we use the Stata xtabond2 command of Roodman (2009) with options h(2), twostep, and robust.
Following Roodman’s replication of Blundell and Bond (1998), we include time fixed effects as instruments only in
the levels equation, since they are asymptotically redundant in the difference equation.

50The model implies additional restrictions on the relationship between the coefficients on the contemporaneous
and lagged terms, which we do not test here.

51Further lags of differences in the levels equation are redundant (Arellano and Bover, 1995; Blundell and Bond,
2000).

36



for contemporaneous materials expenditures.52 That said, it is worth noting that the resulting

coefficient estimates are not very far from our baseline estimates: focusing on the specification in

Column 3 (using all available instruments), the point estimate of .48 for materials is larger than

our β̂TSIVm of .38, the point estimate of .26 for labor is smaller than our β̂TSIVl of .40, but these

differences are not statistically significant. The point estimate for capital of .03 is significantly

smaller than our β̂TSIVk of .20.53

Table 9 reports estimates from four leading proxy-variable methods: those of Olley and Pakes

(1996) (OP), Levinsohn and Petrin (2003) (LP), Wooldridge (2009) (using materials as the proxy),

and Gandhi, Navarro and Rivers (2020) (GNR).54 The method of Ackerberg, Caves and Frazer

(2015) (ACF) is also commonly used, but the authors recommend that it only be used with value-

added production functions, not gross output functions, and hence their coefficient estimates

are not directly comparable to ours. For OP, LP and Wooldridge in Columns 1-3, the point

estimates for materials are consistently higher than our baseline estimate, and fall outside our

weak-instrument-robust confidence interval.55 The point estimate for labor is consistently lower

than our baseline estimate, although not significantly so. The GNR estimate of the materials

coefficient in Column 4 is very similar to ours, and the labor coefficient is somewhat larger

although not significantly so.56 Overall, although the differences in estimates are generally not

statistically significant, it is worth emphasizing that they will be of consequence when the point

estimates are used to estimate markups or productivity, as we will see in the next section.

7 Measures of Productivity

Our main objective in this paper is to estimate the output elasticities consistently, without price,

quality, or variety biases, and we have argued that our method achieves this goal. But once we

52The Hansen test of over-identifying restrictions is appropriate in the non-homoskedastic case and does not reject
the hypothesis that the instruments are jointly valid. But it should be interpreted with caution, as it is weakened
by the presence of many instruments (Roodman, 2009).

53In Appendix Table A13, we report the results of System GMM estimation with our quantity aggregates in place
of revenues and expenditures. The results are broadly similar, with slighly lower estimates of the materials and
labor elasticities, and somewhat higher estimate of the capital elasticity.

54For OP, LP and Wooldridge, we use the Stata command prodest (Rovigatti and Mollisi, 2018); for GNR, we
have coded the estimation ourselves. For all specifications we obtain standard errors by using a bootstrap with 50
replications.

55Note that for OP a large number of firms report zero investment in capital for some years and are dropped
from the estimation.

56In implementing GNR, given the Cobb-Douglas structure of the the production function, we use a polynomial
of degree zero for the materials expenditure elasticity, a polynomial of degree one in capital and labor for the
integration constant, and a polynomial of degree three for the AR(1) process of ωit (i.e. ωit =

∑3
a=1 δaω

a
it−1).
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have the elasticity estimates in hand, it is natural to ask whether we can use them to construct

a measure of productivity. In this section, we define and discuss productivity measures using

our estimates (Subsection 7.1) and compare our preferred measure to other common methods in

predicting export performance (Subsection 7.2).

7.1 Definitions

Our output-elasticity estimates can be used to construct two different TFP measures, depending

on whether we use our Sato-Vartia quantity indexes or revenues and expenditures. We refer to

these two measures as TFPQ′ and TFPR′. Neither measure captures only technical efficiency,

but their shortcomings differ, in ways that are useful to examine. In this subsection we focus on

changes in productivity rather than levels, because in changes we can avoid taking a stand on the

firm-specific normalizations, ỹi0 and m̃i0.

To define 4TFPQ′, we use the observable Sato-Vartia quantity indexes, ỹSVit and m̃SV
it :57

4TFPQ′it = 4ỹSVit − β̂m 4 m̃SV
it − β̂k 4 kit − β̂` 4 `it (25)

In our model, technical efficiency is represented by 4ωit +4εit +4ξt.58 But referring to (16),

we see that:

plim
I→∞

4TFPQ′it = 4ξt +4ωit +4εit + (βm 4 vmit −4v
y
it) + (βm 4 qmit −4q

y
it) (26)

That is, changes in quality and variety of both outputs and inputs are captured in 4TFPQ′. If

we can can be confident that output and input quality and variety are roughly constant over time

— as for instance for single-product, single-input firms in homogeneous-good industries — then

4TFPQ′ is a consistent estimator for technical efficiency. But to the extent that a firm increases

output quality or variety, 4TFPQ′ will understate increases in technical efficiency, and to the

extent that it increases input quality or variety, it will overstate them. This may explain, for

instance, why the Egyptian rug producers randomly allocated an initial export contract in Atkin

et al. (2017, 2019) saw increases in output quality, profitability, and productivity measured under

57Note that in the case of single-product, single-input firms, ỹSVit and m̃SV
it reduce to the physical quantity of the

single output and input.
58There is some difference in practice in whether to include the year effect, 4ξt, in the definition of TFP. Here

we do, but note that it can be removed by deviating from year means.
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laboratory conditions, but a decrease in physical-quantity-based TFP.

To define 4TFPR′, we use firm revenues and expenditures, rit and eit, in place of the output

and input quantity indexes, ỹSVit and m̃SV
it :

4TFPR′it = 4rit − β̂m 4 eit − β̂k 4 kit − β̂` 4 `it (27)

Given rit = ỹit + p̃it, eit = m̃it + w̃it, and the relationships in (13)-(14), it follows that:

plim
I→∞

4TFPR′it = 4ξt +4ωit +4εit +4p̃it − βm 4 w̃it

Relative to 4TFPQ′, 4TFPR′ has the advantage that changes in quality and variety are ab-

sorbed in the revenues and expenditure terms. But it has the disadvantage that it captures pure

price changes, reflected in the price index changes, 4p̃it and 4w̃it. Abstracting from variety

changes, if there are no changes in quality-adjusted prices (e.g. if both quality and prices are con-

stant, or if price changes fully reflect quality changes and not other factors), then4p̃it = 4w̃it = 0

and 4TFPR′ reflects changes in technical efficiency only. On the other hand, if quality-adjusted

prices of outputs or inputs change, they show up in 4TFPR′.

Whether 4TFPQ′ or 4TFPR′ is the more appropriate measure thus depends to some extent

on the setting and analytical objective, with 4TFPQ′ better suited in homogeneous industries

and 4TFPR′ arguably more informative in industries with greater vertical differentiation and/or

output and input specialization. In the case of the rubber and plastics industries in Colombia,

in which quality differences are likely to be important, we believe that 4TFPR′ is the more

appropriate measure. At the same time, it is important to remain aware that it may reflect price

changes as well as changes in technical efficiency.

7.2 Comparison with Other TFP Measures

How does our preferred measure of productivity compare to other standard measures? As a first

illustration, Appendix Table A14 reports pairwise correlation coefficients between the levels of

TFP calculated using different methods.59 To the methods in Tables 8, 9 and A13 mentioned

above, we add estimates from the Ackerberg et al. (2015) method, using a value-added production

59In levels, we define:

TFPR′ = rit − β̂meit − β̂kkit − β̂``it (28)
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function, and from the OLS estimation with quantity aggregates from Table 4. Overall, the

different measures are reasonably highly correlated with one another, an observation that has

been made for instance by Van Biesebroeck (2008) and Eslava et al. (2009) for different sets of

methods, but the correlations are far from perfect. Our measure is most highly correlated with

the System GMM estimates, LP and Wooldridge, and least correlated with OP and ACF.

One way to begin to evaluate the performance of different estimators is to examine how well

they predict outcomes that one can be fairly confident are related to firms’ technical efficiency.

Here, as a first step, we relate estimated changes in productivity to future changes in export

performance. Although there is little agreement in the literature about whether exporting itself

increases productivity, there is a broader consensus that productivity increases are likely to predict

future expansions of exports (Bernard and Jensen, 1999; Alvarez and López, 2005; Costantini

and Melitz, 2008; Aw et al., 2011). Relating productivity to future export growth also avoids

concerns about how changes in markups or product composition due to exporting might affect

contemporaneous productivity estimates.

Table 10 reports correlations between changes in the various productivity measures from period

t− s to t and changes in the inverse hyperbolic sine of the value of exports from t to t+ s, where

s ∈ {1, 2, 3}. We standardize all measures so that they have standard deviation 1 (pooling years)

and we include year effects.60 In all specifications, the R2 is quite small, and for the single-period

differences (s = 1), none of the TFP measures are significant predictors of future exports. But

for longer differences, we find that all of the productivity measures are significant predictors of

future export growth. Given that the measures have been standardized, the magnitude of the

coefficients can be interpreted as an indicator of the strength of the relationship, and we see that

our measure is a stronger predictor of future export growth than the other measures we have

considered. Although the explanatory power of all of the measures is quite low, our measure has

the largest R2 among the set. These results are by no means definitive, but we view them as

suggestive that our measure represents a modest improvement in measuring technical efficiency

in our setting.

using the notation from above, where rit and eit is material expenditures. For the other methods, TFP is defined
analogously, using log revenues.

60Note that the longer the differences we use, the fewer observations we are able to include in the sample, since
we lose observations either at the beginning or the end of the spell in the sample for each firm.
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8 Conclusion

This paper has developed a method for estimating production-function parameters that can be

applied in differentiated-product industries. We believe that three contributions stand out. First,

we have highlighted the pitfalls of using physical quantities to estimate output elasticities or

TFP in industries where quality and variety vary by firm and over time. Using within-firm CES

aggregators for outputs and material inputs, we have shown theoretically how standard estimates

of output elasticities are likely to be biased by quality and variety differences. Second, we have

used external drivers of input prices as instruments to estimate the elasticities of output with

respect to materials and labor. The idea of using external instruments is not new (Griliches and

Mairesse, 1998), but previous authors have not had access to the combination of datasets and

naturally occurring variation that we have been able to take advantage of here. Third, we have

developed an approach to improving estimates of the output elasticity with respect to capital. It is

well known that models in first-differences yield unsatisfactory estimates of the capital coefficient,

and our first-step model is not an exception. In the spirit of System GMM, we have added a levels

equation, using a lagged difference as an instrument. Our two-step IV (TSIV) approach has the

advantage that the estimates of the materials and labor coefficients are robust to misspecification

of the second step, which requires stronger assumptions. Our method addresses the quality and

variety biases we have identified, in addition to transmission bias, and measures of productivity

changes constructed using our estimates do well in comparison to other standard measures in

predicting future export growth at the firm level.

Two important questions remain open. The first is what to do if one does not have the

combination of rich data and naturally occurring variation that we have in our setting. Data

on physical quantities of both inputs and outputs are becoming increasingly available, including

in Spain (Doraszelski and Jaumandreu, 2013, 2018), Portugal (Bastos et al., 2018), the United

States (Roberts and Supina, 1996; Foster et al., 2008; Atalay, 2014), Chile (Garcia-Marin and

Voigtländer, 2019), Ecuador (Bas and Paunov, 2020), Bangladesh (Cajal Grossi et al., 2019),

Japan in the Meiji period (Braguinsky et al., 2015), China (Brandt et al., forthcoming) and

India (Gupta, 2020). But it may be difficult to find credible external instruments and internal

instruments may be weak. One potential way forward would be to construct proxies for the quality

and variety terms that appear in estimating equations such as (14)-(15) above. The approach

of De Loecker et al. (2016) of including a flexible function of output price and market share on
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the right-hand-side is a promising step in this direction. One could also consider constructing

explicit measures of quality, as for instance Khandelwal et al. (2013) do for output quality; such a

strategy would require imposing more structure on consumer demand than we have been willing to

do here, but may be warranted in some circumstances. To proxy for variety, one could include the

observable components of the variety terms derived above and allow for firm-specific coefficients

on them.61 It is also worth noting that in our setting, OLS in levels using the firm-level output

and input quantity aggregates yield estimates very similar to our TSIV procedure; the biases due

to unobserved quality and variety changes and the biases deriving from correlations between input

choices and time-invariant firm effects appear to offset. More research is required to determine

if this generalizes to other contexts; if it does, such OLS estimates may prove to be very useful

measures in settings where quantity data are available but credible external instruments are not.

The second big open question is how to arrive at a measure of changes in technical efficiency

that excludes both pure price changes and changes in unobserved quality and variety. We believe

that our method yields an improved set of output elasticity estimates. But even with these

improved estimates, neither quantity-based TFP nor revenue-based TFP is an ideal measure

of technical efficiency, as discussed above in Section 7. The proxy strategies mentioned in the

previous paragraph represent one way forward, as they would provide direct measures of the

quality and variety terms that could be used to correct quantity-based TFP. Another approach

would be to use revenue-based TFP but to estimate markups explicitly in order to purge them

from the productivity estimate. Garcia-Marin and Voigtländer (2019) and Blum et al. (2018)

have recently pursued a strategy in this spirit, using the method of De Loecker et al. (2016) to

estimate markups. We believe that our method for estimating output elasticities will help to

improve estimates of markups in the approaches of De Loecker and Warzynski (2012) and De

Loecker et al. (2016) and hence could help to improve revenue-based TFP measures along these

lines.
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Table 1. Primary Outputs, Rubber and Plastic Products Producers

CPC code
Share of total

revenues
CPC description of outputs

A. Rubber Products Producers

3611301 0.52 Rubber tires, of a kind used on buses and trucks

3611101 0.16 Rubber tires, of a kind used on automobiles

3612001 0.07 Retreaded pneumatic tires

3611303 0.05 Rubber tires, of a kind used on agricultural vehicles and machines

3626001 0.03 Rubber gloves

3627217 0.02 Rubber separators for batteries

3611502 0.02 Strips for retreading rubber tires

3611405 0.02 Pneumatic tires, of a kind used on buses and trucks

3627220 0.02 Rubber cushions

3624002 0.02 Rubber conveyor belts

3611501 0.01 Camel-back strips for retreading tires

3627216 0.01 Rubber spare parts for automotive and machinery

3627218 0.01 Printing blankets

3626004 0.01 Surgical gloves

3611401 0.01 Rubber protectors for tires

3791010 0.01 Abrasive cloths and fabrics for cleaning

3611404 0.01 Pneumatic tires, of a kind used on motor car

3542009 0.00 Rubber-based adhesive

3627207 0.00 Rubber articles for electrical use

3622202 0.00 Rubber mixtures n.e.c. (not elsewhere classified)

B. Plastic Products Producers

3632001 0.09 Polyvinyl tubing

3641006 0.08 Printed plastic bags

3641003 0.08 Printed plastic film in tubular form

3633011 0.07 Polypropylene film

3633004 0.07 Polyethylene film

3641004 0.06 Unprinted plastic bags

3649007 0.06 Plastic caps and lids

3633012 0.05 Plastic laminated film

3649014 0.05 Blister packaging for medicines

3649002 0.05 Plastic containers of a capacity not exceeding 1000 cm3

3649003 0.05 Plastic containers of a capacity exceeding 1000 cm3

3633014 0.04 Printed polyethylene film

3694013 0.04 Plastic straws

3633008 0.04 Acrylic sheets

3641005 0.04 Synthetic sacks

3632008 0.03 Fabrics of polypropylen in tubular form

3649008 0.03 Plastic container for drugs and medicines

3633007 0.02 Polyvinyl film

3639201 0.02 Polyvinyl film with textile material

4153504 0.02 Laminated aluminum foil

Notes: Baseline sample, producers of rubber and plastic products (ISIC rev. 2 categories 355 and 356), 1996-2009.

Shares for each industry calculated as revenues from output over total revenues for 2000-2009 period, pooling firms

and years.



Table 2. Primary Inputs, Rubber and Plastic Products Producers

CPC code
Share of total
expenditures

CPC description of inputs

A. Rubber Products Producers

0321001 0.40 Natural latex

3423112 0.12 Carbon blacks and other forms of carbon

2799601 0.07 Tire cord fabric

2819004 0.05 Fabric of synthetic fiber in tubular form

3611502 0.05 Strips for retreading rubber tires

4126301 0.04 Iron or steel cable

3478007 0.04 Nylon

3549405 0.03 Stabilizers for synthetic resins

0321002 0.03 Natural rubber in primary forms or in plates, sheets or strips

3633021 0.03 Polypropylene fabric

3549934 0.03 Food emulsifier

3480301 0.02 Synthetic latex

3622101 0.02 Rubber sheets

3549403 0.02 Vulcanization Accelerators

3543102 0.01 Mineral oils

3422101 0.01 Dioxide, zinc oxide

3549401 0.01 Plasticizers

3611402 0.01 White strips for tires

3474002 0.01 Polyester resins

3926001 0.01 Used tires

B. Plastic Products Producers

3471001 0.35 Polyethylene

3476001 0.14 Polypropylene

3473002 0.12 Polyvinyl chloride

3472001 0.05 Polystyrene

3479902 0.04 Synthetic emulsions

3474002 0.04 Polyester resins

3549404 0.03 Plastics additive

3513004 0.03 Alcohol-based flexographic inks

3633011 0.03 Polypropylene film

3434007 0.03 Colorants for plastics

3415901 0.02 Diisocyanates - desmophens - desmodurs

3411403 0.02 Styrene

3215302 0.02 Corrugated cardboard boxes

3633004 0.02 Polyethylene film

3477002 0.02 Acrylic resins

3479903 0.02 Homopolymers

3474007 0.01 Polyacetal thermoplastic resin

3549401 0.01 Plasticizers

3413307 0.01 Polyols

4153501 0.01 Aluminum foil

Notes: Baseline sample, producers of rubber and plastics products. Shares for each industry calculated as expenditures

on input over total expenditures for 2000-2009 period, pooling firms and years.



Table 3. Summary Statistics

Rubber Plastics All

A. Period: 1996-2009

Number of Observations 554 3693 4247

Number of Firms 46 316 362

Number of Workers 98.08 101.37 100.94

Production value (billions 2000 pesos) 10.46 8.83 9.04

Earnings per year, permanent workers (millions 2000 pesos) 7.14 7.00 7.02

B. Period: 2000-2009

Input variables

No. inputs per firm in average firm-year 11.66 8.01 8.46

Share of firms that import 0.61 0.59 0.60

No. inputs per firm in avg. firm-year, cond. on importing 16.57 10.34 11.18

Fraction of expenditure on imported inputs 0.23 0.18 0.19

No. imported HS8 categories in avg. firm-year, cond. on importing 29.55 19.41 20.47

Output variables

No. outputs per firm in average firm-year 3.54 3.08 3.13

Share of firms that export 0.48 0.55 0.54

No. outputs per firm in avg. firm-year, cond. on exporting 5.26 3.83 4.00

Fraction of revenues from exported outputs 0.08 0.06 0.06

No. exported HS8 categories in avg. firm-year, cond. on exporting 5.64 5.38 5.41

Notes: Baseline sample, rubber and plastics products producers, 1996-2009. Table reports averages of firm-level

values (giving every firm equal weight). Exports and imports available in EAM data only in 2000-2009. Average

2000 exchange rate is approximately 2,000 pesos/USD.



Table 4. OLS and First Differences

(1) (2) (3) (4)

A. Sales and Expenditures

log salesit 4log salesit

log expenditureit 0.675*** 0.675***

(0.027) (0.027)

log labor (`it) 0.298*** 0.296***

(0.039) (0.040)

log capital (kit) 0.087*** 0.087***

(0.019) (0.019)

4 log expenditureit 0.488*** 0.485***

(0.050) (0.052)

4 log labor (4`it) 0.294*** 0.288***

(0.037) (0.036)

4 log capital (4kit) 0.010 0.010

(0.019) (0.018)

Year effects N Y N Y

R-squared 0.926 0.927 0.335 0.339

B. Sato-Vartia Output and Input Indexes

log output index (ỹSVit ) 4 log output index (4ỹSVit )

log materials index (m̃SV
it ) 0.469*** 0.468***

(0.084) (0.085)

log labor (`it) 0.357*** 0.358***

(0.109) (0.110)

log capital (kit) 0.196*** 0.195***

(0.045) (0.046)

4 log materials index (4m̃SV
it ) 0.434*** 0.428***

(0.052) (0.053)

4 log labor (4`it) 0.283*** 0.274***

(0.046) (0.045)

4 log capital (4kit) 0.013 0.015

(0.020) (0.020)

Year effects N Y N Y

R-squared 0.704 0.705 0.258 0.263

Notes: Baseline sample: N (observations) = 4,247, N (distinct firms) = 362 for all regressions. Dependent

variables at top of columns. 4 refers to within-firm difference between t− 1 and t. Robust standard errors

in parentheses. *10% level, **5% level, ***1% level.



Table 5. Differences (Step 1): First Stage

4m̃SV
it 4`it 4kit 4m̃SV

it 4`it 4kit 4m̃SV
it 4`it 4kit

(1) (2) (3) (4) (5) (6) (7) (8) (9)

m̃SV
it−2 -0.017*** 0.013*** 0.027*** -0.018*** 0.013*** 0.026***

(0.006) (0.004) (0.005) (0.006) (0.004) (0.005)

`it−2 0.014 -0.030*** 0.044*** 0.012 -0.031*** 0.042***

(0.009) (0.007) (0.010) (0.009) (0.007) (0.010)

kit−2 0.009 0.009** -0.048*** 0.001 0.002 -0.010*** 0.007 0.008** -0.049***

(0.006) (0.004) (0.007) (0.002) (0.002) (0.003) (0.006) (0.004) (0.007)

4 pred. import price index (4 ̂̃wimpit ) -0.245** -0.040 0.073 -0.254*** -0.047 0.119

(0.097) (0.064) (0.103) (0.098) (0.063) (0.102)

4 log min. wage x “bite” (4zit) -1.722** -1.642*** -2.518*** -1.792** -1.734*** -2.028***

-0.848 (0.489) (0.605) (0.861) (0.495) (0.600)

Year effects Y Y Y Y Y Y Y Y Y

N 4,247 4,247 4,247 4,247 4,247 4,247 4,247 4,247 4,247

R-squared 0.024 0.035 0.038 0.025 0.031 0.015 0.026 0.039 0.041

F - statistic 3.424 7.703 21.018 4.486 5.891 6.819 3.704 7.245 13.904

F - SW 2.070 2.366 2.258 4.179 4.988 17.373 5.897 12.195 17.354

KP LM test (underidentification) 1.995 3.925 15.88

KP Wald F-test (weak insts.) 0.673 1.353 3.363

Notes: Dependent variables at tops of columns. SW refers to Sanderson and Windmeijer (2016), KP to Kleibergen and Paap (2006). The F-statistic is the

standard F for a test that the coefficients on the excluded instruments (indicated at left) are zero. The KP statistics, LM test for under-identification and

Wald F test for weak instruments, are for each IV model as a whole, and are not specific to Columns 2, 5, 8. Robust standard errors in parentheses. *10%

level, **5% level, ***1% level.



Table 6. Differences (Step 1): Second Stage

Dep.var.: 4 log output index (4ỹSVit )

internal
instruments

only

external
instruments

+ kit−2

internal &
external

instruments

internal &
external

instruments
(LIML)

(1) (2) (3) (4)

4 log materials index (4m̃SV
it ) 0.520 0.247 0.381** 0.381**

(0.487) (0.541) (0.177) (0.179)

4 log labor (4`it) 0.485 0.600 0.397** 0.397**

(0.394) (0.714) (0.184) (0.184)

4 log capital (4kit) -0.148 -0.211 -0.181 -0.181

(0.196) (0.215) (0.124) (0.124)

Year effects Y Y Y Y

N 4,247 4,247 4,247 4,247

R-squared 0.224 0.191 0.239 0.239

Materials Robust (LC) Conf. Int. 90% [ 0.150 - 0.612] [ 0.103 - 0.658]

Labor Robust (LC) Conf. Int. 90% [ 0.159 - 0.636] [ 0.105 - 0.690]

Materials Robust CI (LC) Conf. Int. 95% [ 0.106 - 0.656] [ 0.050 - 0.711]

Labor Robust CI (LC) Conf. Int. 95% [ 0.113 - 0.681] [ 0.049 - 0.746]

Arellano-Bond AR(2) statistic 0.323 0.285 0.339 0.339

Arellano-Bond p-value 0.746 0.776 0.735 0.735

Notes: Corresponding first-stage estimates are in Table 5: Column 1 here corresponds to Columns 1-3, Column 2

to Columns 4-6, Column 3 to Columns 7-9 of Table 5. Robust standard errors in parentheses. Weak-instrument-

robust confidence intervals are based on LC test of Andrews (2018), implemented by Stata twostepweakiv command.

Arellano-Bond statistic and p-value test for serial correlation in residual, based on Arellano and Bond (1991). *10%

level, **5% level, ***1% level.



Table 7. Levels (Step 2): First and Second Stages

A. First stage

Dep.var.: log capital (kit)

(1) (2)

4kit−1 0.666***

(0.106)

4kit−2 0.676***

(0.112)

Year effects Y Y

N 4,247 4,131

R squared 0.028 0.027

Kleibergen-Paap LM test (underidentification) 43.269 40.554

Kleibergen-Paap Wald F-test (weak insts.) 39.453 36.727

B. Second stage

Dep.var.: ỹSVit − β̂mm̃SV
it − β̂``it

(1) (2) (3)

log capital kit 0.196 0.289 0.239***

(0.088) (0.101) (0.020)

[0.188] [0.196]

Year effects Y Y Y

N 4,247 4,131 4,247

R-squared 0.173 0.170 0.258

Specification IV IV OLS

Notes: Panel B Columns 1-2 correspond to Panel A Columns 1-2. Panel C Column 3 is OLS.

Uncorrected robust standard errors in parentheses. Corrected robust standard errors in brackets.

See Section 2.4.2 for details. *10% level, **5% level, ***1% level.



Table 8. System GMM

log salesit
(1) (2) (3)

log salesit−1 0.636*** 0.607*** 0.550***

(0.079) (0.082) (0.082)

log expenditureit 0.524*** 0.537*** 0.483***

(0.083) (0.080) (0.059)

log expenditureit−1 -0.250*** -0.232*** -0.179***

(0.064) (0.056) (0.042)

log labor (`it) 0.055 0.051 0.258***

(0.122) (0.084) (0.067)

log labor (`it−1) 0.068 0.062 -0.070

(0.112) (0.084) (0.064)

log capital (kit) 0.103* 0.050 0.033

(0.062) (0.062) (0.040)

log capital (kit−1) -0.089* -0.037 -0.014

(0.050) (0.053) (0.034)

N 4,247 4,247 4,247

Lag limit 2 3 all

Hansen test 107.0 156.4 344.2

Hansen p-value 0.428 0.587 1.000

Notes: Table presents estimates of standard System GMM model (Blundell and Bond, 2000), using the

“two-step” procedure described in Roodman (2009), with initial weighting matrix defined in Doornik et al.

(2012) and finite-sample correction from Windmeijer (2005). The Stata command is xtabond2 (Roodman,

2009), with options h(2), twostep, and robust. The difference equation includes lags to t − 2 in Column 1,

lags to t−3 in Column 2, and all available lags in Column 3. The numbers of instruments are as indicated in

Appendix Table A12. The Hansen test of overidentifying restrictions is appropriate in the non-homoskedastic

case, but should be interpreted with caution, as it is weakened by the presence of many instruments. See

Section 6 for further details. Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table 9. Proxy-Variable Methods

Dep.var.: log salesit

OP LP Wooldridge GNR

(1) (2) (3) (4)

log expenditureit 0.672*** 0.636*** 0.604*** 0.406***

(0.028) (0.033) (0.019) (0.010)

log labor (`it) 0.258*** 0.289*** 0.290*** 0.513***

(0.049) (0.046) (0.010) (0.035)

log capital (kit) 0.131*** 0.113*** 0.054** 0.138***

(0.035) (0.035) (0.025) (0.027)

N 1,933 4,247 4,247 4,247

Notes: Table presents estimates in our baseline sample from proxy-variable methods of Olley and Pakes

(1996) (OP), Levinsohn and Petrin (2003) (LP), Wooldridge (2009) (using materials as the proxy), and

Gandhi et al. (2020) (GNR). OP, LP, and Wooldridge estimates generated by Stata command prodest

(Rovigatti and Mollisi, 2018). GNR estimates from authors’ own code. See Section 6 for further details.

Standard errors in parentheses from bootstraps with 50 replications. *10% level, **5% level, ***1% level.



Table 10. 4TFP (Standardized) as Predictor of Future Export Growth

asinh(export valueit+s) - asinh(export valueit)

s = 1 s = 2 s = 3

(1) (2) (3)

A. TSIV

TFP TSIVt − TFP TSIVt−s 0.097 1.204*** 1.633***

(0.310) (0.321) (0.365)

R-squared 0.005 0.012 0.017

B. OLS using Sato-Vartia quantity indexes

TFPOLS−SVt − TFPOLS−SVt−s 0.074 0.437*** 0.463**

(0.152) (0.156) (0.181)

R-squared 0.005 0.010 0.011

C. System GMM

TFPSysGMM
t − TFPSysGMM

t−s 0.158 0.753*** 0.971***

(0.210) (0.219) (0.254)

R-squared 0.005 0.012 0.015

D. Olley and Pakes

TFPOPt − TFPOPt−s 0.071 0.329** 0.411**

(0.138) (0.145) (0.170)

R-squared 0.005 0.009 0.011

E. Levinsohn and Petrin

TFPLPt − TFPLPt−s 0.071 0.350** 0.427**

(0.139) (0.146) (0.171)

R-squared 0.005 0.009 0.011

F. Wooldridge

TFPWt − TFPWt−s 0.091 0.452*** 0.577***

(0.154) (0.162) (0.190)

R-squared 0.005 0.010 0.012

G. Gandhi, Navarro and Rivers

TFPGNRt − TFPGNRt−s 0.035 0.460*** 0.463**

(0.155) (0.159) (0.185)

R-squared 0.005 0.010 0.011

H. Ackerberg, Caves and Frazer

TFPACFt − TFPACFt−s 0.149 0.343** 0.353**

(0.126) (0.135) (0.152)

R-squared 0.005 0.010 0.010

N 3,539 2,835 2,127

Year effects Y Y Y

Notes: TFP calculated in levels (see Appendix Table A14 for details and pairwise correlations), then standardized

by year to have variance 1 (pooling years). (For OP method, TFP calculated for all observations in baseline sample,

even those with zero investment omitted from estimation in Table 9.) Robust standard errors in parentheses. *10%

level, **5% level, ***1% level.
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A Theory Appendix

A.1 Construction of CES Price/Quantity Indexes, Output Side

A.1.1 Consumer’s Minimization Problem

The Lagrangian corresponding to the first stage of the consumer’s problem is given by:

Ly =
∑
j∈Ωyit

YijtPijt − λ


∑
j∈Ωyit

(ϕijtYijt)

σ
y
i
−1

σ
y
i


σ
y
i

σ
y
i
−1

− Ỹit


The first order condition with respect to product j, ∂Ly

∂Yijt
= 0, implies:

Pijt
ϕijt

= λ(ϕijtYijt)
− 1

σ
y
i Ỹ

1

σ
y
i

it (A1)

Raising both sides of this equation to the power 1 − σyi , summing over the j ∈ Ωy
it, using the

definition of P̃it in (2), and rearranging, we have:

λ = P̃it (A2)

The second-order conditions for minimization are satisfied without further assumptions if and
only if σyi ∈ (0, 1) ∪ (1,∞).1 To see this, note that a necessary and sufficient condition for Ly to
be convex is that all principal minors of order r of the Hessian matrix of Ly are non-negative, for
r = 1, · · · , J , where J is the number of products in Ωy

it. (See e.g. Theorem 2.3.3 in Sydsaeter
et al. (2005).) Chen (2012) shows (Theorem 5.1) that the determinant of the Hessian matrix of
a CES function is always zero. This implies that the principal minor of order J of the Hessian
for Ly is zero. Furthermore, every principal minor of degree 1 ≤ r < J − 1 corresponds to the
determinant of the Hessian matrix of a CES aggregator with J − r varieties and hence is also
zero.2 We are left only with the principal minors of order one, which correspond to the elements
of the diagonal of the Hessian matrix of Ly, which are the second derivatives:

∂2Ly

∂2Yijt
=
−λ
σyi

Ỹ 1

σ
y
i

it ϕ

σ
y
i
−1

σ
y
i

ijt Y

−1−σy
i

σ
y
i

ijt

(ϕijtYijt
Ỹit

)σ
y
i
−1

σ
y
i − 1


Given that the second term in brackets is always negative and λ > 0 (see (A2)), all principal
minors of order one are greater than zero if and only if σyi ∈ (0, 1) ∪ (1,∞). Hence Ly is convex
and the second-order conditions for minimization are satisfied for a critical point satisfying the
Lagrangian first order conditions if and only if σyi ∈ (0, 1)∪ (1,∞). In the terminology of Sun and
Yang (2006), goods in the bundle Ωy

it are gross substitutes when σyi > 1 and gross complements
when 0 < σyi < 1. That is, the demand for product j increases in response to an increase in the
price of any other variety k, holding everything else constant, if and only if σyi > 1; it decreases

1For the limiting case σyi → 1, Ỹit tends to a Cobb-Douglas function with exponents ϕijt. In this case, Ỹit is
concave if and only if

∑
j∈Ω

y
it
ϕijt ≤ 1.

2Note that the theorem still applies when replacing p(x) by p(x) + c, where the additional constant arises due
to the excluded varieties that now enter as constant terms within the sum.
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if and only if 0 < σyi < 1. Although our methodology can accommodate either case, we believe
that given the sectors we consider in our empirical application, it is reasonable to assume σyi > 1.
In other settings, it may be plausible to allow 0 < σyi < 1.

Plugging (A2) into (A1) and rearranging, we can express the output quantity for product j
in terms of its price, its quality, and the firm-level aggregate output and price index:

Yijt = Ỹit

(
P̃it
Pijt

)σyi
ϕijt

σyi −1 (A3)

Note that:

Rit =
∑
j∈Ωyit

Rijt =
∑
j∈Ωyit

PijtYijt = P̃itỸit

(
P̃it

)σyi −1 ∑
j∈Ωyit

(
Pijt
ϕijt

)1−σyi

︸ ︷︷ ︸
=P̃

1−σy
i

it

= P̃itỸit (A4)

That is, P̃it is indeed the price index that sets Rit = P̃itỸit.

A.1.2 Price Index Log Change

Using (A3),

Syijt =
PijtYijt
Rit

=
PijtYijt

P̃itỸit
=


(
Pijt
ϕijt

)
P̃it

1−σyi

(A5)

Hence from the definitions in (5) in the main text:

χyit,t−1 =

∑
j∈Ωy∗it

Syijt∑
j∈Ωyit

Syijt
=

∑
j∈Ωy∗it

(
Pijt
ϕijt

)1−σyi

∑
j∈Ωyit

(
Pijt
ϕijt

)1−σyi
, χyit−1,t =

∑
j∈Ωy∗it

Syijt−1∑
j∈Ωyit−1

Syijt−1

=

∑
j∈Ωy∗it

(
Pijt−1

ϕijt−1

)1−σyi

∑
j∈Ωyit−1

(
Pijt−1

ϕijt−1

)1−σyi

Then using the definition of P̃it, (2),

P̃it

P̃it−1

=

[∑
j∈Ωyit

(
Pijt
ϕijt

)1−σyi
] 1

1−σy
i

[∑
j∈Ωyit−1

(
Pijt−1

ϕijt−1

)1−σyi
] 1

1−σy
i

=

(
χyit−1,t

χyit,t−1

) 1

1−σy
i

(∑
j∈Ωy∗it

(
Pijt
ϕijt

)1−σyi
) 1

1−σy
i

(∑
j∈Ωy∗it

(
Pijt−1

ϕijt−1

)1−σyi
) 1

1−σy
i

=

(
χyit−1,t

χyit,t−1

) 1

1−σy
i P̃ ∗it

P̃ ∗it−1

(A6)

where P̃ ∗it is the common-goods price index defined in the main text (footnote 15).

To derive an expression for
P̃ ∗it
P̃ ∗it−1

, note that (A5) implies a similar expression for the expendi-
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ture share of common goods:

Sy∗ijt =
PijtYijt

P̃ ∗itỸ
∗
it

=
PijtYijt

P̃itỸit
· P̃itỸit
P̃ ∗itỸ

∗
it

=


(
Pijt
ϕijt

)
P̃it

1−σyi
P̃itỸit

P̃ ∗itỸ
∗
it

Using (A3),

P̃itỸit

P̃ ∗itỸ
∗
it

=
P̃itỸit∑

j∈Ωy∗it
PijtYijt

=

(
P̃it

P̃ ∗it

)1−σyi

Hence:

Sy∗ijt =


(
Pijt
ϕijt

)
P̃ ∗it

1−σyi

(A7)

Divide (A7) by the same equation for the previous year, take logs, and re-arrange:

ln

(
P̃ ∗it
P̃ ∗it−1

)
− ln

(
Pijt
ϕijt
Pijt−1
ϕijt−1

)

ln

(
Sy∗ijt
Sy∗ijt−1

) =
1

σyi − 1

Multiply both sides by Sy∗ijt − S
y∗
ijt−1 and sum over the common goods:

∑
j∈Ωy∗it

(
Sy∗ijt − S

y∗
ijt−1

) ln

(
P̃ ∗it
P̃ ∗it−1

)
− ln

(
Pijt
ϕijt
Pijt−1
ϕijt−1

)

ln

(
Sy∗ijt
Sy∗ijt−1

) =

(
1

σyi − 1

) ∑
j∈Ωy∗it

(
Sy∗ijt − S

y∗
ijt−1

)
= 0

where the second equality follows because
∑

jΩy∗it
Sy∗ijt =

∑
jΩy∗it

Sy∗ijt−1 = 1. This implies:

∑
j∈Ωy∗it

(
Sy∗ijt − S

y∗
ijt−1

lnSy∗ijt − lnSy∗ijt−1

)
ln

(
P̃ ∗it

P̃ ∗it−1

)
=
∑
j∈Ωy∗it

(
Sy∗ijt − S

y∗
ijt−1

lnSy∗ijt − lnSy∗ijt−1

)
ln

 Pijt
ϕijt
Pijt−1

ϕijt−1

 .

Since ln

(
P̃ ∗it
P̃ ∗it−1

)
does not vary with j, this can be re-written as:

ln

(
P̃ ∗it

P̃ ∗it−1

)
=
∑
j∈Ωy∗it

δijt ln

(
Pijt
Pijt−1

)
−
∑
j∈Ωy∗it

δijt ln

(
ϕijt
ϕijt−1

)
, (A8)
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where δijt is as defined in (5) above. Combining (A6) and (A8), we have:

ln

(
P̃it

P̃it−1

)
=
∑
j∈Ωy∗it

δijt ln

(
Pijt
Pijt−1

)
−
∑
j∈Ωy∗it

δijt ln

(
ϕijt
ϕijt−1

)
− 1

σyi − 1
ln

(
χyit−1,t

χyit,t−1

)
(A9)

which is (4).

A.1.3 Quantity Index Log Change

To derive the log change in the quantity index, start by noting that (A3) implies,

Pijt = P̃it

(
Ỹit
Yijt

) 1

σ
y
i

ϕ

σ
y
i
−1

σ
y
i

ijt

Therefore,

ln

(
Pijt
Pijt−1

)
= ln

(
P̃it

P̃it−1

)
+

1

σyi
ln

(
Ỹit

Ỹit−1

)
− 1

σyi
ln

(
Yijt
Yijt−1

)
+

σyi
σyi − 1

ln

(
ϕijt
ϕijt−1

)
Plugging this into (A9), re-arranging, and using the fact that

∑
j∈Ωy∗it

δijt = 1 gives:

ln

(
Ỹit

Ỹit−1

)
=
∑
j∈Ωy∗it

δijt ln

(
Yijt
Yijt−1

)
+
∑
j∈Ωy∗it

δijt ln

(
ϕijt
ϕijt−1

)
+

σyi
σyi − 1

ln

(
χyit−1,t

χyit,t−1

)

which is (6). The fact that P̃ ∗itỸ
∗
it = R∗it can be shown as in (A4), using just common goods.

A.2 Construction of CES Price/Quantity Indexes, Input Side

The derivations for the price and quantity indexes for the input side are analogous to the ones
from the output side. We include them for the sake of completeness.

A.2.1 Firm’s Minimization Problem

The Lagrangian corresponding to the first stage of the firm’s problem is given by:

Lm =
∑
h∈Ωmit

MihtWiht − λ


 ∑
h∈Ωmit

(αihtMiht)
σmi −1

σm
i


σmi
σm
i
−1

− M̃it


The first order condition with respect to input h, ∂Lm

∂Miht
= 0, implies:

Wiht

αiht
= λ(αihtMiht)

− 1
σm
i M̃

1
σm
i

it (A10)
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Raising both sides of this equation to the power 1 − σmi , summing over the h ∈ Ωm
it , using the

definition of W̃it in (9) in the main text, and rearranging, we have:

λ = W̃it (A11)

Analogously to the output case, it can be shown that (without further assumptions) any
point satisfying the first order conditions constitutes an global minimum if and only if σmi ∈
(0, 1) ∪ (1,∞). Therefore, our method allows material inputs to be gross complements, σmi < 1,
or to be gross substitutes, σmi > 1. Nevertheless, given the type of sectors we consider in our
empirical analysis, we assume material inputs to be gross substitutes, that is, we assume σmi > 1.

Plugging (A11) into (A10) and rearranging:

Miht = M̃it

(
W̃it

Wiht

)σmi
αiht

σmi −1 (A12)

As for revenues,

Eit =
∑
h∈Ωmit

Eiht =
∑
h∈Ωmit

WihtMiht = W̃itM̃it

(
W̃it

)σmi −1 ∑
h∈Ωmit

(
Wiht

αiht

)1−σmi

︸ ︷︷ ︸
=W̃

1−σm
i

it

= W̃itM̃it (A13)

A.2.2 Price Index Log Change

Using (A12),

Smiht =
WihtMiht

Eit
=
WihtMiht

W̃itM̃it

=


(
Wiht
αiht

)
W̃it

1−σmi

(A14)

Hence from the definitions in (11) in the main text:

χmit,t−1 =

∑
h∈Ωm∗it

Smiht∑
h∈Ωmit

Smiht
=

∑
h∈Ωm∗it

(
Wiht
αiht

)1−σmi

∑
h∈Ωmit

(
Wiht
αiht

)1−σmi
, χmit−1,t =

∑
h∈Ωm∗it

Smiht−1∑
h∈Ωmit−1

Smiht−1

=

∑
h∈Ωm∗it

(
Wiht−1

αiht−1

)1−σmi

∑
h∈Ωmit−1

(
Wiht−1

αiht−1

)1−σmi

Then using the definition of W̃it, (9),

W̃it

W̃it−1

=

[∑
h∈Ωmit

(
Wiht
αiht

)1−σmi
] 1

1−σm
i

[∑
h∈Ωmit−1

(
Wiht−1

αiht−1

)1−σmi
] 1

1−σm
i

=

(
χmit−1,t

χmit,t−1

) 1
1−σm

i

(∑
h∈Ωm∗it

(
Wiht
αiht

)1−σmi
) 1

1−σm
i

(∑
h∈Ωm∗it

(
Wiht−1

αiht−1

)1−σmi
) 1

1−σm
i

=

(
χmit−1,t

χmit,t−1

) 1
1−σm

i W̃ ∗it

W̃ ∗it−1

(A15)
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where W̃ ∗it is the common-goods price index defined in the main text (footnote 22).

To derive an expression for
W̃ ∗it
W̃ ∗it−1

, note that (A14) implies a similar expression for the expen-

diture share of common goods:

Sm∗iht =
WihtMiht

W̃ ∗itM̃
∗
it

=
WihtMiht

W̃itM̃it

· W̃itM̃it

W̃ ∗itM̃
∗
it

=


(
Wiht
αiht

)
W̃it

1−σmi
W̃itM̃it

W̃ ∗itM̃
∗
it

Using (A3),

W̃itM̃it

W̃ ∗itM̃
∗
it

=
W̃itM̃it∑

h∈Ωm∗it
WihtMiht

=

(
W̃it

W̃ ∗it

)1−σmi

Hence:

Sm∗iht =


(
Wiht
αiht

)
W̃ ∗it

1−σmi

(A16)

Divide (A16) by the same equation for the previous year, take logs, and re-arrange:

ln

(
W̃ ∗it
W̃ ∗it−1

)
− ln

(
Wiht
αiht

Wiht−1
αiht−1

)
ln
(

Sm∗iht
Sm∗iht−1

) =
1

σmi − 1

Multiply both sides by Sm∗iht − Sm∗iht−1 and sum over the common goods:

∑
h∈Ωm∗it

(
Sm∗iht − Sm∗iht−1

) ln

(
W̃ ∗it
W̃ ∗it−1

)
− ln

(
Wiht
αiht

Wiht−1
αiht−1

)
ln
(

Sm∗iht
Sm∗iht−1

) =

(
1

σmi − 1

) ∑
h∈Ωm∗it

(
Sm∗iht − Sm∗iht−1

)
= 0

where the second equality follows because
∑

h∈Ωm∗it
Sm∗iht =

∑
h∈Ωm∗it

Sm∗iht−1 = 1. This implies:

∑
h∈Ωm∗it

(
Sm∗iht − Sm∗iht−1

lnSm∗iht − lnSm∗iht−1

)
ln

(
W̃ ∗it

W̃ ∗it−1

)
=

∑
h∈Ωm∗it

(
Sm∗iht − Sm∗iht−1

lnSm∗iht − lnSm∗iht−1

)
ln

 Wiht
αiht

Wiht−1

αiht−1


Since ln

(
W̃ ∗it
W̃ ∗it−1

)
does not vary with h, this can be re-written as:

ln

(
W̃ ∗it

W̃ ∗it−1

)
=

∑
h∈Ωm∗it

δiht ln

(
Wiht

Wiht−1

)
−
∑

h∈Ωm∗it

δiht ln

(
αiht
αiht−1

)
(A17)
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where δiht is as defined in (11) above. Combining (A15) and (A17), we have:

ln

(
W̃it

W̃it−1

)
=

∑
h∈Ωm∗it

δiht ln

(
Wiht

Wiht−1

)
−
∑

h∈Ωm∗it

δiht ln

(
αiht
αiht−1

)
− 1

σmi − 1
ln

(
χmit−1,t

χmit,t−1

)
(A18)

which is (10) in the main text.

A.2.3 Quantity Index Log Change

We start by noting that (A12) implies

Wiht = W̃it

(
M̃it

Miht

) 1
σm
i

α

σmi −1

σm
i

iht

Hence:

ln

(
Wiht

Wiht−1

)
= ln

(
W̃it

W̃it−1

)
+

1

σyi
ln

(
M̃it

M̃it−1

)
− 1

σyi
ln

(
Wiht

Wiht−1

)
+

σyi
σyi − 1

ln

(
αiht
αiht−1

)
Plugging this into (A18), re-arranging, and using the fact that

∑
h∈Ωm∗it

δiht = 1 gives the log

change in M̃it:

ln

(
M̃it

M̃it−1

)
=

∑
h∈Ωm∗it

δiht ln

(
Miht

Miht−1

)
+
∑

h∈Ωm∗it

δiht ln
αiht
αiht−1

+
σmi

σmi − 1
ln

(
χmit−1,t

χmit,t−1

)

which is (12) in the main text. The fact that W̃ ∗itM̃
∗
it = E∗it can be shown as in (A13), using just

common goods.

A.3 Variance Correction for βk in Levels-Equation Estimation

Our sequential production function estimation belongs to a general class of two-step M-Estimators
discussed for instance in Wooldridge (2002, Section 12.4) (and previously in Newey (1984)). The
results there can be applied directly. Under our assumptions, our first-step estimates β̂m and β̂l
and their standard errors are consistently estimated. The levels-equation estimate of βk, call it̂̂
βk, can be calculated by solving:

T∑
t=1

N∑
i=1

4kit−1

((
ỹSVit − β̂mm̃SV

it − β̂llit
)
− ̂̂βkkit) = 0. (A19)

As noted in the main text (see footnote 38), the consistency of β̂m and β̂l is sufficient to guarantee

the consistency of
̂̂
βk. In the special case when E(4kit−1m̃

SV
it ) = 0 and E(4kit−1`it) = 0, the

first step estimation can be ignored when computing the asymptotic variance of
̂̂
βk.

3 If those

3The score function corresponding to the levels-equation IV estimation is s(ait, βk;βm, βl) = 4kit−1 (ỹSVit −
βmm̃

SV
it − βllit− βkkit), where ait = (ỹSVit , m̃SV

it , lit, kit,4kit−1). If E(4kit−1m̃
SV
it ) = 0 and E(4kit−1`it) = 0 then

the gradient of the score function with respect to βm and β` is zero and equation 12.37 of Wooldridge (2002) holds,
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conditions do not hold, then we need to use a corrected expression for the asymptotic variance
of β̂k, which takes into account that β̂m and β̂l were estimated in a previous step. A consistent

estimate of the corrected asymptotic variance for
̂̂
βk, call it V̂βk , is given by Newey and McFadden

(1994):4

V̂βk =

(T ×N)−1

(∑T
t=1

∑N
i=1

(
ŝit + F̂ ψ̂it

)2
)

Ĝ2
(A20)

where

Ĝ = − 1

NT

T∑
t=1

N∑
i=1

4kit−1kit

F̂ = − 1

NT

T∑
t=1

N∑
i=1

4kit−1

[
m̃SV
it , lit, 0

]
ŝit = 4kit−1

(
ỹSVit − β̂mm̃SV

it − β̂llit −
̂̂
βkkit

)
ψ̂it = −

(
Ĥ ′Ŵ Ĥ

)−1
Ĥ ′Ŵ m̂it

and the terms in ψ̂it are defined as:

Ĥ =
1

NT

T∑
t=1

N∑
i=1

[
4ŵimpit ,4zit, kit−2, m̃

SV
it−2, lit−2

] [
4m̃SV

it ,4lit,4kit
]′

Ŵ =
1

NT

T∑
t=1

N∑
i=1

[
4ŵimpit ,4zit, kit−2, m̃

SV
it−2, lit−2

] [
4̂̄git,4zit, kit−2, m̃

SV
it−2, lit−2

]′
m̂it =

[
4̂̄git,4zit, kit−2, m̃

SV
it−2, lit−2

]′ (4ỹSVit − β̂m 4 m̃SV
it − β̂l 4 lit − β̂k 4 kit

)
We report the corresponding corrected standard errors when we report

̂̂
βk.

A.4 Construction of Alternative Quantity Indexes

On the input side, following standard formulations (see e.g. Dodge (2008)), we define the
Laspeyres input quantity index for t− 1 and t as:

M̃Lasp
it,t−1 =

∑
h∈Ωm∗it

Wiht−1Miht∑
h∈Ωm∗it

Wiht−1Miht−1
(A21)

and the Paasche input quantity index as:

M̃Paas
it,t−1 =

∑
h∈Ωm∗it

WihtMiht∑
h∈Ωm∗it

WihtMiht−1
, (A22)

implying that we can ignore the first step in calculating the asymptotic variance of
̂̂
βk.

4See also Proposition 2 of Kripfganz and Schwarz (2019).
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The Tornqvist quantity index is defined as:

M̃Torn
it,t−1 =

∏
h∈Ωm∗it

(
Miht

Miht−1

) 1
2

(Sm∗iht+Sm∗iht−1)

(A23)

where Sm∗iht and Sm∗iht−1 are as defined in footnote 22 of the main text.
Note that the Laspeyres quantity index is related to the Paasche price index, and vice-versa.

If we define the Laspeyres price index as:

W̃Lasp
it,t−1 =

∑
h∈Ωm∗it

WihtMiht−1∑
h∈Ωm∗it

Wiht−1Miht−1
. (A24)

and the Paasche price index as:

W̃Paas
it,t−1 =

∑
h∈Ωm∗it

WihtMiht∑
h∈Ωm∗it

Wiht−1Miht
(A25)

then the common-input expenditure ratio between t and t − 1 is the product of the Laspeyres
price index and the Paasche quantity index and also the product of the Laspeyres quantity index
and the Paasche price index:

E∗it
E∗it−1

=

∑
h∈Ωm∗it

WihtMiht∑
h∈Ωm∗it

Wiht−1Miht−1
= M̃Lasp

it,t−1 × W̃
Paas
it,t−1 = M̃Paas

it,t−1 × W̃
Lasp
it,t−1

The definition of the alternative output quantity indexes is analogous to the definition of the
input quantity indexes (A21), (A22) and (A23).
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B Data Appendix

B.1 Manufacturing Survey

The Encuesta Anual Manufacturera (EAM, Annual Manufacturing Survey), carried out by the
Colombian national statistical agency, Departamento Nacional de Estad́ıstica (DANE), can be
considered a census of manufacturing plants with 10 or more employees. The sample includes
plants with fewer employees but value of production above a certain level (which has changed
over time). Also, once plants are in the survey, they typically are kept in the sample, even if
employment or value of production fall below the cutoffs.

The survey distinguishes between the value of output produced and output sold (which may
differ because of holding inventories) and the value of materials consumed and materials purchased.
We use value of output produced and value of materials consumed and refer to these, with some
looseness of language, as sales (or revenues) and material expenditures.

For each plant, we construct capital stock using the perpetual-inventory method with a depre-
ciation rate of 0.05, using information only on machinery and equipment, including transportation
equipment. That is, we calculate Kit = Ki,t−1 × (0.95) + Ii,t−1 where Kit is the capital stock of
plant i in year t and Ii,t−1 is investment in machinery and equipment by plant i in year t− 1. We
set the initial value for each plant, Ki0, using the book value of machinery and equipment reported
by the plant in its first year in the sample. We deflate both initial book value and investment by
a price index for gross fixed capital formation calculated by Colombia’s central bank. We sum
capital stock across plants to get a firm-level measure.

DANE assigns plants to 4-digit industrial categories (International Standard Industrial Clas-
sification (ISIC) revision 2) in each year based on the sectors in which they have the most output.
To each firm, we assign the 4-digit industry in which the firm has the most output over our study
period, given DANE’s plant-year-level assignments.

The EAM contains employment and wage-bill information for broad occupational categories
and contractual status (permanent vs. temporary). Employment is average employment over the
year, and the wage bill is the total wage bill for the year. The employment measure we use as
a covariate is the total number of workers, including temporary workers. When calculating the
average monthly earnings at the firm level (for use in comparing to the monthly minimum wage
in the “bite” measure — see Subsection 2.4.1 in the main text), we use only permanent workers,
since dividing annual earnings by twelve arguably gives a sensible measure of monthly earnings
only for permanent workers, who have a higher likelihood of working 12 months per year.

B.2 Trade Data

The Colombian customs agency, Dirección Nacional de Impuestos y Aduanas Nacionales (DIAN),
registers firm-level international trade transactions. Every registry corresponds to a purchase (im-
port) or to a sale (export) by a Colombian firm and includes information on the date of the trans-
action, country of origin or destination, quantities purchased or sold, net weight of the shipment
(in Kilograms) and total value of the transaction at the product 10 digits Harmonized System
(HS) level. We exclude from our analysis the following: (1) Transactions with zero or negative
total monetary value. (2) Transactions with zero or negative quantities. (3) Transactions with
missing origin or destination. (4) Transactions made through a Free Trade Zone (Zona Franca).
(5) Transactions of goods temporarily going out of the country for modifications and then coming
back in. (6) Domestic transactions that are subject to taxes. (7) Transactions involving products
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corresponding to the HS 2-digit classifications: 27 (Mineral fuels, mineral oils and products of
their distillation; bituminous substances; mineral waxes), 84 (Nuclear reactors, boilers, machinery
and mechanical appliances; parts thereof) and 85 (Electrical machinery and equipment and parts
thereof; sound recorders and reproducers, television image and sound recorders and reproducers,
and parts and accessories of such articles). After making these exclusions we rank countries ac-
cording to the total value of imports by Colombian firms for the period 1992-2009. We keep only
transactions (imports or exports) between Colombian firms and foreign firms located in the top
100 countries of this ranking.

B.3 Household Survey Data

To construct the histogram of real wages in Appendix Figure A3, we use household surveys
collected by DANE, the statistical agency. (In unreported results, we have constructed similar
histograms by year for the entire 1992-2009 period.) We combine three different waves of surveys
to compute monthly average wages at the individual level: Encuesta Nacional de Hogares (ENH)
from 1992-Q2 to 2002-Q2, Encuesta Continua de Hogares (ECH) from 2002-Q3 to 2006-Q2 and
the Gran Encuesta Integrada de Hogares (GEIH) from 2006-Q3 to 2009-Q4. When the survey
reports daily or weekly wages we obtain monthly wages by multiplying the reported daily wage
by 20.4 (approximate number of working days per month) or the reported weekly wage by 4.2
(approximate number of weeks per month). We restrict our analysis to wages reported by indi-
viduals employed by manufacturing firms with 11 or more workers and use the survey’s individual
sampling weights to compute the average monthly wage across locations and individuals.5

5In Colombia, in addition to the monthly minimum salary, employers are also required to pay a transport
subsidy of approximately 9% of the minimum salary to workers who earn less than 2 times the minimum wage. The
instructions in the household survey ask respondent not to include travel expenses (viáticos) in their wage reports.
It appears that some respondents include the transport subsidy when reporting their wage and some do not; that
appears to be why we see bunching in Appendix Figure A3 both at the minimum wage (203,826 nominal pesos,
approximately 247,000 pesos in real terms (2000 pesos)) and at the minimum plus the transport subsidy (224,526
nominal pesos, approximately 272,000 pesos in real terms (2000 pesos)).
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Figure A1. Real Exchange Rate Variation, 1994-2009
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Notes: Figure plots real exchange rate (RER), normalized to 100 in 1994, calculated as in equation (17) in text, for top 6 import origins for

rubber and plastics sectors. An RER increase reflects a real appreciation in the trading partner.



Figure A2. Real Minimum Monthly Wage, 1994-2009
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Notes: Figure plots Colombian national real monthly minimum wage, in thousands of 2000 pesos, for 1994-2009.
Average 2000 exchange rate is approximately 2,000 pesos/USD.



Figure A3. Histogram of Real Wages from Household Survey, 1998
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Notes: Histogram of real monthly wages in 1998, in thousands of 2000 pesos, from Encuesta Nacional de Hogares
(ENH, National Household Survey). See Appendix B.3 for details. Bins are 10,000 pesos wide. Solid vertical line
is national minimum wage in 1998, dashed vertical line is national minimum wage in 1999. Average 2000 exchange
rate is approximately 2,000 pesos/USD.



Figure A3. Real Exchange Rate Variation, 1994-2009 (cont.)
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Notes: Figure plots real exchange rate (RER), normalized to 100 in 1994, calculated as in equation (17) in text, for import origins ranked 7-12

for rubber and plastics sectors. (See Fig. A1 for ranks 1-6.) An RER increase reflects a real appreciation in the trading partner.



Figure A4. Coefficients from Import-Price Regressions
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Figure A4. Coefficients from Import-Price Regressions (cont.)
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-0.13 (-1.38, 1.12)
-0.13 (-1.42, 1.16)
-0.12 (-1.42, 1.18)
-0.12 (-1.99, 1.76)
-0.07 (-0.86, 0.72)
-0.07 (-0.42, 0.28)
-0.03 (-0.35, 0.29)
-0.03 (-1.61, 1.55)
-0.02 (-2.75, 2.72)
-0.00 (-1.29, 1.29)
0.00 (-0.18, 0.18)
0.02 (-1.74, 1.77)
0.04 (-0.54, 0.63)
0.06 (-0.11, 0.23)
0.06 (-1.16, 1.29)
0.11 (-0.56, 0.78)

Effect (95% CI)

-10 -5 0 5 10

Notes on first page of table.



Table A1. Primary Outputs and Inputs, Glass Products Producers

CPC code
Share of total

revenues/expenditures
CPC description

A. Outputs

3719102 0.21 Glass bottles for soft drinks

3719103 0.18 Glass bottles of a capacity not exceeding 1 liter

3711502 0.18 Safety glass

3711201 0.12 Unworked flat glass

3719104 0.11 Glass bottles of a capacity exceeding 1 liter

3711503 0.06 Safety glass for motor car, windshield glass and similar articles

3719101 0.03 Small glass jars for perfumery, pharmacy and laboratory

3712204 0.01 Glass wool sheet

3719309 0.01 Glass vases

2799704 0.01 Asphalt fabrics

4299942 0.01 Wire rods and rings, for brassieres

3719302 0.01 Glasswares of a kind used for table and kitchen

3712203 0.01 Fiberglass ducts

3719503 0.01 Glass ampoules

3712101 0.01 Fiberglass

3711601 0.01 Unframed mirror

3712907 0.01 Fiberglass bathtubs

3712908 0.01 Fiberglass tanks

3711501 0.00 Tempered glass

3719903 0.00 Glass screens

B. Inputs

3711201 0.30 Unworked flat glass

3424501 0.22 Sodium carbonate

3711103 0.10 Waste and scrap of glass

3633019 0.07 Plastic fabric

3633007 0.05 Polyvinyl film

1531201 0.05 Siliceous sands and gravels

1639902 0.03 Feldspar

3219702 0.03 Printed labels

3474002 0.02 Polyester resins

1512004 0.02 Crushed or ground limestone

3215308 0.02 Partitions and dividers of carboard for boxes

3215302 0.01 Corrugated cardboard boxes

4151203 0.01 Angles, shapes and sections of copper

3511104 0.01 Anticorrosive bases and paints

3712101 0.01 Fiberglass

3170101 0.01 Wooden packaging box

4299942 0.01 Wire rods and rings, for brassieres

3170105 0.01 Pallets

3424202 0.01 Sodium sulfate

3641002 0.01 Unprinted plastic film in tubular form

Notes: Sample is producers of glass products (ISIC rev. 2 category 362). Shares calculated as revenues from output

over total revenues (outputs) or expenditures on input over total expenditures (inputs) for 2000-2009 period, pooling

firms and years.



Table A2. Summary Statistics, Glass Products

A. Period: 1996-2009

Number of Observations 410

Number of Firms 34

Number of Workers 122.97

Production value (billions 2000 pesos) 16.41

Earnings per year, permanent workers (millions 2000 pesos) 7.06

B. Period: 2000-2009

Input variables

No. inputs per firm in average firm-year 9.43

Share of firms that import 0.65

No. inputs per firm in avg. firm-year, cond. on importing 9.50

Fraction of expenditure on imported inputs 0.46

No. imported HS8 categories in avg. firm-year, cond. on importing 24.74

Output variables

No. outputs per firm in average firm-year 2.92

Share of firms that export 0.53

No. outputs per firm in avg. firm-year, cond. on exporting 3.48

Fraction of revenues from exported outputs 0.25

No. exported HS8 categories in avg. firm-year, cond. on exporting 5.31

Notes: Sample is producers of glass products (ISIC rev. 2 category 362). Exports and imports

available in EAM data only in 2000-2009. Average 2000 exchange rate is approximately 2,000

pesos/USD.



Table A3. Difference Equation, Quantity Indexes, GMM-Style Instruments

Dep. var.: 4 ỹSVit

(1) (2) (3)

4 m̃SV
it 0.580*** 0.523*** 0.434***

(0.129) (0.094) (0.077)

4 log labor (4`it) 0.442*** 0.466*** 0.441***

(0.166) (0.134) (0.099)

4 log capital (4kit) -0.015 0.005 0.044

(0.111) (0.070) (0.050)

N 4,247 4,247 4,247

Lag Limit 2 3 all

Number of excluded instruments 42 81 315

Hansen test 41.59 71.73 306

Hansen p-value 0.358 0.678 0.584

F - SW 4m̃SV
it 1.538 1.355 1.770

F - SW 4 log labor (4`it)l 2.186 1.797 1.814

F - SW 4 log capital (4kit) 3.324 3.100 2.328

KP LM statistic (underidentification) 50.78 104.4 387.9

KP Wald F-stat (weak instruments) 1.266 1.411 1.775

Notes: Table reports GMM estimation of our difference equation, (16), where further lags have been added

“GMM-style” (Holtz-Eakin et al., 1988; Roodman, 2009), using only available lags and allowing separate

coefficients in each period. Lags are included just to t − 2 in Column 1, to t − 3 in Column 2, and to the

firm’s initial year in Column 3. The first-stage coefficients are not reported, but number of instruments

and the Sanderson-Windmeijer F-statistics corresponding to the first-stage regressions are reported in each

column. Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table A4. Differences (Step 1): First Stage, Alternative Aggregators

4m̃Torn
it 4`it 4kit 4m̃Lasp

it 4`it 4kit 4m̃Paas
it 4`it 4kit

(1) (2) (3) (4) (5) (6) (7) (8) (9)

m̃Torn
it−2 -0.015** 0.011*** 0.026***

(0.006) (0.004) (0.005)

m̃Lasp
it−2 -0.021*** 0.012*** 0.025***

(0.007) (0.004) (0.005)

m̃Paas
it−2 -0.015** 0.013*** 0.025***

(0.006) (0.004) (0.005)

`it−2 0.012 -0.030*** 0.042*** 0.016 -0.031*** 0.042*** 0.010 -0.031*** 0.043***

(0.010) (0.007) (0.010) (0.010) (0.007) (0.010) (0.009) (0.007) (0.010)

kit−2 0.005 0.008** -0.049*** 0.009 0.008** -0.049*** 0.005 0.008** -0.049***

(0.006) (0.004) (0.007) (0.006) (0.004) (0.007) (0.006) (0.004) (0.007)

4 pred. import price index (4 ̂̃wimpit ) -0.210** -0.047 0.118 -0.249** -0.048 0.116 -0.260*** -0.046 0.120

(0.099) (0.063) (0.102) (0.098) (0.063) (0.102) (0.099) (0.063) (0.102)

4 log min. wage x “bite” (4zit) -1.770** -1.738*** -2.025*** -1.914** -1.729*** -2.019*** -1.680* -1.743*** -2.049***

(0.885) (0.495) (0.600) (0.860) (0.496) (0.599) (0.871) (0.495) (0.600)

Year effects Y Y Y Y Y Y Y Y Y

N 4,247 4,247 4,247 4,247 4,247 4,247 4,247 4,247 4,247

R squared 0.024 0.038 0.042 0.027 0.038 0.041 0.026 0.039 0.041

F - statistic 3.209 6.860 14.496 4.337 7.164 13.538 3.095 7.143 14.035

F - SW 5.326 11.605 18.842 6.803 11.849 17.27 5.050 12.131 17.928

KP LM test (underidentification) 14.440 17.890 14.000

KP Wald F-test (weak insts.) 3.010 3.830 2.927

Notes: Specifications similar to Columns 7-9 of Table 5 but using alternative quantity indexes (Tornqvist, Lapeyres, Paasche) defined in Appendix A.4.

Dependent variables at tops of columns. SW refers to Sanderson and Windmeijer (2016), KP to Kleibergen and Paap (2006). The F-statistic is the standard

F for a test that the coefficients on the excluded instruments (indicated at left) are zero. The KP statistics, LM test for under-identification and Wald F test

for weak instruments, are for each IV model as a whole, and are not specific to Columns 2, 5, 8. Robust standard errors in parentheses. *10% level, **5%

level, ***1% level.



Table A5. Differences (Step 1): Second Stage, Alternative Aggregators

4 log Tornqvist
output index

4 log Laspeyres
output index

4 log Paasche
output index

(1) (2) (3)

4 log Tornqvist materials index (4m̃Torn
it ) 0.470**

(0.206)

4 log Laspeyres materials index (4m̃Lasp
it ) 0.400**

(0.166)

4 log Paasche materials index (4m̃Paas
it ) 0.375*

(0.195)

4 log labor (4`it) 0.414** 0.340* 0.434**

(0.200) (0.189) (0.189)

4 log capital (4kit) -0.203 -0.146 -0.216*

(0.131) (0.129) (0.122)

Year effects Y Y Y

N 4,247 4,247 4,247

R-squared 0.205 0.247 0.218

Materials Robust (LC) Conf. Interval 90% [0.202 - 0.737] [0.183 - 0.616] [0.121 - 0.629]

Labor Robust (LC) Conf. Interval 90% [0.154 - 0.674] [0.095 - 0.586] [0.189 - 0.679]

Materials Robust (LC) Conf. Interval 95% [0.151 - 0.788] [0.141 - 0.658] [-0.129 - 0.678]

Labor Robust (LC) Conf. Interval 95% [0.104 - 0.724] [0.048 - 0.633] [0.142 - 0.726]

Arellano-Bond AR(2) statistic 0.359 0.364 0.340

Arellano-Bond p-value 0.720 0.716 0.734

Notes: Specifications similar to Column 3 of Table 5 but using alternative quantity indexes as defined in Appendix A.4.

Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table A6. Levels (Step 2): Second Stage, Alternative Aggregators

Dep. var.: ỹit − β̂mm̃it − β̂``it
Tornqvist Laspeyres Paasche

(1) (2) (3)

log capital kit 0.104 0.222 0.169

(0.089) (0.095) (0.083)

[0.209] [0.188] [0.197]

Year effects Y Y Y

N 4,247 4,247 4,247

R-squared 0.081 0.192 0.146

Notes: The output and input aggregates used to construct the dependent variable are indicated

at the top of each column. Columns correspond to Appendix Table A5. The first stage of this

levels (Step 2) IV model is identical to that reported in Table 7. Uncorrected robust standard

errors in parentheses. Corrected robust standard errors in brackets. See Section 2.4.2 for details.

Tornqvist, Paasche and Laspeyres quantity indexes are defined in Appendix A.4. *10% level, **5%

level, ***1% level.



Table A7. Differences (Step 1): First Stage, Including Export Price Index

4m̃SV
it 4`it 4kit

(1) (2) (3)

m̃SV
it−2 -0.018*** 0.013*** 0.026***

(0.006) (0.004) (0.005)

`it−2 0.012 -0.031*** 0.042***

(0.009) (0.007) (0.010)

kit−2 0.007 0.008** -0.049***

(0.006) (0.004) (0.007)

4 pred. import price index (4 ̂̃wimpit ) -0.254*** -0.056 0.134

(0.099) (0.063) (0.102)

4 log min. wage x “bite” (4zit) -1.793** -1.740*** -2.018***

(0.862) (0.495) (0.601)

4 pred. export price index (4 ̂̃wexpit ) 0.007 0.103* -0.163

(0.094) (0.062) (0.100)

Year effects Y Y Y

N 4,247 4,247 4,247

R-squared 0.026 0.039 0.042

F - statistic 3.611 7.437 13.640

F - SW 5.724 12.564 16.414

KP LM test (underidentification) 15.410

KP Wald F-test (weak insts.) 3.248

Notes: Dependent variables at tops of columns. SW refers to Sanderson and Windmeijer (2016), KP to

Kleibergen and Paap (2006). The F-statistic is the standard F for a test that the coefficients on the

excluded instruments (indicated at left) are zero. The KP statistics, LM test for under-identification and

Wald F test for weak instruments, are for each IV model as a whole, and are not specific to Columns 2, 5,

8. Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table A8. Differences (Step 1): Second Stage, Including Export Price Index

Dep. var.: 4 log output index (4ỹSVit )

(1)

4m̃SV
it 0.375**

(0.180)

4 log labor (4`it) 0.395**

(0.183)

4 log capital (4kit) -0.182

(0.125)

4 pred. export price index (4 ̂̃wexpit ) -0.040

(0.095)

N 4,247

R-squared 0.238

Materials Robust (LC) Conf. Interval 90% [ 0.141 - 0.609]

Labor Robust (LC) Conf. Interval 90% [ 0.157 - 0.633]

Materials Robust (LC) Conf. Interval 95% [-0.090 - 0.653]

Labor Robust (LC) Conf. Interval 95% [ 0.112 - 0.679]

Arellano-Bond AR(2) statistic 0.338

Arellano-Bond p-value 0.735

Notes: Corresponding first-stage estimates are in Appendix Table A7. Robust standard errors in parentheses.

Weak-instrument-robust confidence intervals are based on LC test of Andrews (2018), implemented by Stata

twostepweakiv command. Arellano-Bond statistic and p-value test for serial correlation in residual, based

on Arellano and Bond (1991). *10% level, **5% level, ***1% level.



Table A9. Differences (Step 1): First Stage, Alternative Samples

plastics-only including glass

4m̃SV
it 4`it 4kit 4m̃SV

it 4`it 4kit
(1) (2) (3) (4) (5) (6)

m̃SV
it−2 -0.022*** 0.011*** 0.026*** -0.020*** 0.014*** 0.027***

(0.007) (0.004) (0.006) (0.006) (0.004) (0.005)

`it−2 0.010 -0.031*** 0.045*** 0.011 -0.032*** 0.041***

(0.009) (0.008) (0.011) (0.009) (0.007) (0.010)

kit−2 0.011* 0.009** -0.050*** 0.010* 0.008** -0.046***

(0.006) (0.004) (0.007) (0.005) (0.003) (0.006)

4 pred. import price index (4 ̂̃wimpit ) -0.297*** -0.107 0.101 -0.235*** -0.039 0.099

(0.106) (0.067) (0.114) (0.079) (0.049) (0.078)

4 log min. wage x “bite” (4zit) -1.426 -1.641*** -2.161*** -1.692** -1.644*** -1.816***

(0.960) (0.518) (0.650) (0.809) (0.467) (0.556)

Year effects Y Y Y Y Y Y

Observations 3,693 3,693 3,693 4,657 4,657 4,657

R-squared 0.030 0.037 0.041 0.028 0.040 0.041

F - statistic 3.847 6.147 11.922 4.626 8.235 15.575

F - SW 5.316 9.719 11.419 6.695 13.576 16.517

KP LM test (underidentification) 14.040 18.450

KP Wald F-test (weak insts.) 2.958 3.852

Notes: Table similar to Table 5, Columns 7-9, for alternative samples of (a) plastics producers only (Columns 1-3) and (b) rubber, plastic, and

glass product producers (Columns 4-6). Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table A10. Differences (Step 1): Second Stage, Alternative Samples

Dep. var.: 4 log output index (4ỹSVit )

plastics-only including glass

(1) (2)

4 log materials index (4m̃SV
it ) 0.351** 0.409**

(0.175) (0.170)

4 log labor (4`it) 0.328* 0.439**

(0.199) (0.175)

4 log capital (4kit) -0.158 -0.188

(0.123) (0.122)

Year effects Y Y

Observations 3,693 4,657

R-squared 0.268 0.220

Materials Robust (LC) Conf. Interval 90% [0.123 - 0.579] [0.188 - 0.631]

Labor Robust (LC) Conf. Interval 90% [0.070 - 0.587] [0.212 - 0.666]

Materials Robust (LC) Conf. Interval 95% [-0.102 - 0.623] [0.146 - 0.673]

Labor Robust (LC) Conf. Interval 95% [0.020 - 0.636] [0.169 - 0.709]

Arellano-Bond AR(2) statistic 0.414 0.803

p-value Arellano-Bond test 0.679 0.422

Notes: Corresponding first-stage estimates are in Table A9. Samples are (a) plastics producers only (Column

1) and (b) rubber, plastic, and glass product producers (Column 2). Robust standard errors in parentheses.

Weak-instrument-robust confidence intervals are based on LC test of Andrews (2018), implemented by Stata

twostepweakiv command. Arellano-Bond statistic and p-value test for serial correlation in residual, based

on Arellano and Bond (1991). *10% level, **5% level, ***1% level.



Table A11. Levels (Step 2): First & Second Stages, Alternative Samples

A. First stage

Dep. var.: log capital (kit)

plastics-only including glass

(1) (2)

4kit−1 0.616*** 0.767***

(0.110) (0.110)

Year effects Y Y

N 3,693 4,657

R-squared 0.026 0.030

Kleibergen-Paap LM test 31.889 48.426

Kleibergen-Paap Wald F-test 31.409 43.404

B. Second stage

Dep. var.: ỹSVit − β̂mm̃SV
it − β̂``it

plastics-only including glass

(1) (2)

log capital kit 0.214 0.195

(0.103) (0.073)

[0.204] [0.180]

Year effects Y Y

N 3,693 4,657

R-squared 0.242 0.161

Notes: Uncorrected robust standard errors in parentheses. Corrected robust standard errors in brackets.

See Section 2.4.2 for details. *10% level, **5% level, ***1% level.



Table A12. System GMM, Weak IV Diagnostics

Differences Levels

Dep. var.: 4log salesit Dep. var.: log salesit
Covariates (1) (2) (3) Covariates (4)

4log salesit−1 0.264** 0.277*** 0.183*** log salesit−1 0.680***

(0.106) (0.091) (0.060) (0.108)

4log expenditureit 0.270** 0.387*** 0.397*** log expenditureit 0.556***

(0.113) (0.092) (0.053) (0.172)

4log expenditureit−1 -0.142* -0.115* -0.073 log expenditureit−1 -0.274***

(0.081) (0.065) (0.045) (0.103)

4 log labor (4`it) 0.290 0.339** 0.341*** log laborit (`it) -0.432*

(0.183) (0.144) (0.070) (0.239)

4 log labor (4`it−1) -0.077 0.069 0.046 log laborit−1 (`it−1) 0.481**

(0.142) (0.116) (0.062) (0.209)

4 log capital (4kit) 0.009 -0.003 -0.004 log capitalit (kit) 0.016

(0.141) (0.081) (0.053) (0.127)

4 log capital (4kit−1) -0.200* -0.146* -0.084* log capitalit−1 (kit−1) 0.010

(0.117) (0.084) (0.046) (0.125)

N 4,247 4,247 4,247 4,247

R-squared 0.166 0.203 0.264 0.961

Lag Limit 2 3 all NA

Number of excluded instruments 56 108 420 56

SW F-stat log salesit 1.858 2.070 2.233 3.970

SW F-stat log expenditureit 2.164 2.034 2.473 1.845

SW F-stat log expenditureit−1 2.149 2.334 3.869 2.094

SW F-stat log labor (`it) 1.796 1.643 1.985 1.238

SW F-stat log labor (`it−1) 2.149 2.334 3.869 1.392

SW F-stat log capital (kit) 1.549 2.120 1.970 1.339

SW F-stat log capital (kit−1) 1.728 2.208 1.855 1.400

KP LM test (underidentification) 75.270 123.959 444.033 51.838

KP Wald test (weak instruments) 1.425 1.462 1.835 0.968

Notes: Table reports IV estimates corresponding to differences (Columns 1-3) and levels (Column 4) equations of System GMM, with weak-instrument

diagnostic statistics. Robust standard errors in parentheses. *10% level, **5% level, ***1% level.



Table A13. System GMM, Using Sato-Vartia Quantity Indexes

Dep. var.: log output index (ỹSVit )

(1) (2) (3)

ỹSVit−1 0.867*** 0.862*** 0.826***

(0.031) (0.030) (0.027)

m̃SV
it 0.357*** 0.398*** 0.415***

(0.082) (0.078) (0.055)

m̃SV
it−1 -0.306*** -0.325*** -0.297***

(0.068) (0.069) (0.053)

log labor (`it) 0.253* 0.200 0.217**

(0.152) (0.150) (0.095)

log labor (`it−1) -0.204 -0.150 -0.183**

(0.142) (0.135) (0.078)

log capital (kit) 0.225** 0.151* 0.101**

(0.114) (0.087) (0.047)

log capital (kit−1) -0.199** -0.139* -0.098**

(0.099) (0.076) (0.043)

N 4,247 4,247 4,247

Lag limit 2 3 All

Hansen test 124.1 191.3 348.9

Hansen p-value 0.099 0.052 1.000

Notes: Table is similar to Table 8 but using CES output and input quantity indexes in places of log sales and

log expenditures. The numbers of instruments are as indicated in Appendix Table A12. Robust standard

errors in parentheses. *10% level, **5% level, ***1% level.



Table A14. Correlation of TFP Measures

TSIV OLS-SV SysGMM OP LP
Wool-
dridge

GNR ACF

(1) (2) (3) (5) (6) (7) (8) (9)

TSIV 1.00

OLS-SV 0.54 1.00

SysGMM 0.94 0.77 1.00

OP 0.34 0.92 0.61 1.00

LP 0.45 0.95 0.70 0.99 1.00

Wooldridge 0.76 0.92 0.92 0.87 0.92 1.00

GNR 0.59 0.99 0.79 0.88 0.92 0.91 1.00

ACF 0.38 0.79 0.57 0.80 0.81 0.75 0.77 1.00

Notes: Table reports pairwise correlation coefficients (using all available observations for each pair) of TFPR in

levels defined as in equation (28) in footnote 59, using coefficient estimates as follows: baseline estimates from

Table 6, Column 3 and Table 7, Panel B, Column 2 (TSIV); OLS using Sato-Vartia quantity indexes with year

effects, as in Table 4, Panel B, Column 2 (OLS-SV); System GMM using all available lags, as in Table 8, Column 3

(SysGMM); Olley and Pakes (1996), Levinsohn and Petrin (2003), Wooldridge (2009), and Gandhi et al. (2020), as

in Table 9 (OP, LP, W, and GNR, respectively); Ackerberg et al. (2015) using a value-added production function

(ACF), estimated using Stata command prodest (Rovigatti and Mollisi, 2018).
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