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Abstract

Local industrial development has the potential to improve health and well-being,
while also damaging health through exposure to harmful pollution. It is an empirical
question which of these effects dominate. Exploiting the quasi-experimental expan-
sion of African large-scale gold mining, I find that local infant mortality rates decrease
by more than 50% alongside rapid economic growth. The instantaneous reduction is
comparable to overall gains in infant survival rates in the study countries from 1970 to
today. The results are robust to migration. Local industrial development—despite risk
of pollution—may be an effective tool to reduce infant mortality in developing coun-
tries.
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One in nine children born in developing countries dies before its fifth birthday' and Sub-
Saharan Africa has among the highest rates of child mortality in the world. Achieving the
sustainable development goals for infant mortality—12 neonatal deaths and 25 deaths under
the age of 5 per 1000 live births—by 2030 poses a significant challenge in the region as
several countries in West and Central Africa are off-track to meet the target (Wang et al.,
2014).

Lack of economic development is one reason for the high child mortality rates: curable
and preventable conditions such as lower respiratory infections, diarrheal diseases, malaria
(Black et al., 2003; Dupas, 2011), and undernutrition (Black et al., 2013a) contribute to the
high health burden in developing countries. In fact, maternal and early-life undernutrition is
a leading cause of global child mortality, responsible for up to 45% of child deaths (Black
etal., 2013a). Analysis of global data shows that country-wide infant mortality rates increase
with negative aggregate income shocks (Baird et al., 2011).

On the other hand, poor environmental conditions, such as airborne and waterborne pol-
lution are threats to infant health in developing countries (Greenstone and Hanna, 2014;
Jayachandran, 2009).> The low environmental quality and high disease burden in devel-
oping countries come from high marginal utility of income: when facing a health-wealth
tradeoff, poor households prefer consumption today over investing in environmental quality
(Greenstone and Jack, 2015).

I explore if investment in extractive industries, in particular the large-scale gold mining
sector, changes local infant mortality rates in Sub-Saharan Africa. The effect is a priori am-
biguous: on the one hand it can increase infant mortality rates by polluting the environment,

affecting agricultural production (Aragén and Rud, 2015). On the other hand it can reduce

'Millennium Development Goals, Child Mortality, The World Bank, 2014. See
http://www.worldbank.org/mdgs/child_mortality.html)

There is a larger literature on the health costs of exposure to pollution in developed countries, e.g. Almond
et al., 2009; Black et al., 2013b; Chay and Greenstone, 2003; Currie and Schmieder, 2009; Currie et al., 2011;
Currie et al., 2017 and Moretti and Neidell, 2011.
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Figure 1: Illustration of the natural experiment

Notes: The data in Figure 1A comes from IntierraRMG and the calculations are the author’s own.
infant mortality rates by bringing economic development (Aragén and Rud, 2013), and jobs
in manual labour and services (Wilson, 2012; Kotsadam and Tolonen, 2016). The effect of
the health-wealth trade-off on infant mortality in the region is an empirical question. It will
depend not only the magnitudes of the environmental change and wealth gains but the mar-
gins for health improvements. The health-wealth tradeoff generated by a polluting industry
is bound to be weaker in contexts with high child mortality due to poverty, and in particular,
malnutrition.

The recent gold mining boom in nine African countries—Burkina Faso, Cote d’Ivoire,
Democratic Republic of Congo, Ethiopia, Ghana, Guinea, Mali, Senegal, Tanzania, illus-
trated in Figure 1—serves as a quasi-experiment to understand how the risk of infant mor-
tality changes with local industrial development. Open pit gold mining—the most com-
mon form of large-scale gold mining in the region—is capital intensive and dominated by
large multinational firms (see Table A11) previously not integrated into the local economy
(Gajigo et al., 2012). I focus on large-scale gold mining because this part of the mining

industry expanded rapidly during the sample period (Figure 1), has a dominant production



technology—open pit mining—in the region making its effects plausibly comparable across
localities. Moreover, large-scale gold mining is less reliant on infrastructure connectivity
than other more bulky natural resources (Weng et al., 2013). For these reasons, I argue that
the mine openings are plausibly exogenous to the local economies. Large gold mines often
open up in relatively poor, rural areas: in our sample, the infant mortality rate is higher (with
an average of 151 per 1000 live births) and the urbanization rate lower in the communities
where the gold mines will eventually open.

I construct a dataset of 37,365 children born within 100 km of a mine by combining
data on women’s fertility records from Demographic and Health Survey (DHS) and large-
scale gold mining data. Combining the two data sources using geographic information at
the village/neighborhood (henceforth called DHS cluster) and mine level, I construct sev-
eral measures of proximity to mines. I utilize the exogenous increase in large-scale gold
mining to estimate the causal effect of local industrialization by defining treatment and con-
trol groups based on proximity measures. Outcomes in the treatment group—children born
close to mines—are contrasted with children born further away in a before-after analysis. I
show that pre-mining trends are similar across the treatment and control groups. Importantly,
the method flexibly controls for unobservable differences between countries and districts—
such as culture, religion and ethnicity—countrywide shocks—e.g., policy or government
changes—and temporal trends within subnational districts.

Infant mortality rates decrease with more than 50% of baseline within a few years from
the start of the industrial gold mining. The effects are concentrated within 10 km from the
mine center point, corresponding to the area with the starkest changes in local economic
growth and job creation. The analysis tries to choose between mechanisms, but acknowl-
edges that the industrial development changes many relevant parameters concurrently, mak-
ing it difficult to disentangle the separate effects of hypothesized channels. Moreover, the

results are robust to different assumptions about trends, fixed effects and clustering. I find



no significant changes in child health care access, but mothers have better access to fertility
information on the radio. Women are also more likely to work in the service sector. These
findings are supported by evidence showing that large-scale gold mining increases women'’s
empowerment in Sub-Saharan Africa (Tolonen, 2018).

Importantly, the results are robust to the exclusion of children born to recent migrants.
Excluding all mothers who migrated after the mine opening year, or in the four years prior
to the mine opening year, reduces the treatment effect from 7.9 percentage points to 6.8
percentage points. This indicates that children born to mothers who have lived in the com-
munities for a long time also benefit from the mine opening. This is in line with previous
evidence from large-scale mining in Africa, confirming that both women born in the min-
ing communities and migrant women benefit from the expansion in mining (Kotsadam and
Tolonen, 2016; Tolonen, 2018).

The treatment effect of a new large-scale gold mine on local infant mortality is large
compared with countrywide trends in infant mortality rates. The drop in the infant mortality
rate occurring within one to two years from the first year of production is twice as large as
the reduction in the infant mortality rate experienced in Singapore during two decades of
high economic growth, and equivalent to total gains in infant survival rates in the African
survey countries since 1970 to today. The results illustrate that industrial development can
bring significant and rapid gains in infant survival rates in high mortality areas.

The paper discusses remainder of the paper is organized as follows. Section 1 presents
the data and context of gold mining in Sub-Saharan Africa. Section 2 describes the empir-
ical strategy. Section 3 presents the results and discusses potential mechanisms. Section 4
describes the robustness analysis. Section 5 provides a brief discussion of the magnitude of

the results in relation to global trends in infant mortality and concludes.
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Figure 2: Map of Gold Mines and DHS Clusters in Northwestern Tanzania
1 Data and Context

The paper creates a unique record of births across mining areas in Africa and extractive
industry data. Specifically, I combine demographic data from 30 individual nationally repre-
sentative surveys conducted in 9 countries. The dataset contains 37,365 births from 1987 to
2012 recorded to mothers living within 100 km of an industrial gold mining site. Figure 2A
shows the geographic location of the gold mines used in the analysis, and Figure 2B zooms
in on Tanzania, highlighting mine locations (yellow dots), the survey area (the green circles)

and villages (also called DHS clusters, indicated by blue dots).

1.1 Demographic data

The Demographic and Health Survey (DHS) collects data on health and fertility in develop-
ing countries (see Appendix for more detail). The final data set consists of 30 cross-sectional

DHS datasets: four survey rounds each for Burkina Faso, Ghana, Guinea, Mali, and Tanza-
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nia, and three survey rounds for Cote d’Ivoire, Ethiopia, and Senegal, and one survey round
for Democratic Republic of Congo. This corresponds to all the DHS survey rounds that have
household location data for countries in which there is at least one large-scale gold mine that
was ever active between 1987 and 2012. Appendix Figure Al shows the sample years for
each country (dashed line), and the years for which we have sampled births (shaded grey).
All women aged 15-49 in the randomly selected households are selected for the sample, and
the outcome of all pregnancies in the last five years are recorded. Descriptive statistics for
children aged O to 5 as well as for their mothers are presented in Table 1. Variable descrip-
tions can be found in appendix Table Al.

Table 1 illustrates that there are some pre-treatment differences among mothers in the
control (column 2) and treatment group (column 3). In particular, mothers in the pre-
treatment group are slightly less urban, 0.68 years younger and have half a year more edu-
cation (which could be due to the age composition). Importantly, the infant mortality rates
are significantly higher in the pre-treatment group compared to the control group in the pre-
treatment period. This will not be a threat to the estimation strategy, which relies on the
parallel trend assumption.

For certain outcomes such as women’s employment and fertility, I use the women’s re-
code instead of the child recode. Women who have given birth in the last five years prior
to the survey year are included in the child recode, however, to understand for example the
effect of industrial mining on fertility we need to analyse the full sample of women — also
those who had no children. Mean values for outcomes used from the women’s recode are

reported in the relevant results tables.

1.2 Mining data

The large-scale gold mining data comes from IntierraRMG (see Appendix Text) and con-

tains all African large-scale gold mines with geographic coordinates and historic production



volumes. The data has previously been used in research on the effects of large-scale mining
(Aragoén and Rud, 2015; Kotsadam and Tolonen, 2016; von der Goltz and Barnwal, 2014).
The geo-coordinates provided by the data have been updated to correspond to the mine center
point (see Appendix for further details).

The data set contains only large-scale mining operations, most of them owned by foreign
owned companies (see Table All) from for example Canada, Australia and the UK. The
context is highly relevant: extractive industries receive a large share of total foreign direct
investment. In particular, large-scale gold mining has rapidly expanded across African coun-
tries: Africa currently produces 20% of the world production of gold and 34 countries in
Africa have significant gold deposits that could be extracted in large-scale operations in the
future (Gajigo et al., 2012).

The industrial mining database only contains information on large-scale gold operations.
Artisanal and small-scale mining (ASM) may be a confounding factor but the lack of de-
tailed, time-varying records of legal and illegal ASM activities makes it impossible to dis-
entangle the two sectors. In some instances, artisanal and small-scale mining is part of the
land use prior to the establishment of a large-scale mine. The establishment of a large mine
may (1) crowd out small-scale activities through enforcing property rights, (2) not affect the
ASM sector, especially if the small-scale mining is illegal and property rights are not en-
forced, (3) increase ASM activities if the latter uses the scrap material from the large-scale
mine. It is, to my knowledge, unknown which one of these three scenarios is the most com-
mon. Small-scale gold mining is associated with mercury pollution—the mercury is used
in the traditional amalgamation process to separate the gold from the ore—which can be a
threat to fetal development and child health. It is possible that large-scale gold mining could
improve local child health by crowding out the small-scale sector, if the latter is associated

with more adverse health effects.



Table 1: Extensive Summary Statistics

(1) (2) 3) “) 5) (6) (7
Mean value Min Max
Sample whole control treatment control treatment
sample group group group group

Time period pre pre post post
Characteristics
mother age 29.17 29.54 28.86% 28.73 28.27 15 49
mother education 1.88 1.333 1.876* 2.483 4.880 0 21
household is urban 0.187 0.194 0.044* 0.181 0.236 0 1
child is male 0.506 0.506 0.512 0.506 0.550 0 1
birth number 3.976 3.996 4.290* 3.96 3.676 1 17
birth year 2000 1999 1997* 2003 2003 1987 2012
Infant mortality
1 month 0.038 0.042 0.066* 0.035 0.024 0 1
6 months 0.057 0.070 0.108* 0.057 0.030 0 1
12 months 0.097 0.106 0.151* 0.091 0.048 0 1
12 months boys 0.103 0.110 0.150* 0.097 0.063 0 1
12 months girls 0.093 0.102 0.154* 0.085 0.030 0 1
Treatment variables
industrial*mine dep. 0.010 1
mine dep. (10km) 0.023 1
Observations 48,151 25,583 639 21,438 491

Notes: Control group is within 10-100 km from a mine

Treatment group is 0-10 km from a mine

pre-treatment, control group has mine = 0, and no active mine within 100 km
pre-treatment, treatment group has mine = 1, but no active mine within 10 km
post-treatment, control group has mine = 0, and at least 1 active mine within 100 km
post-treatment group has mine = 1, and at least 1 active mine within 10 km

* p < 0.05 for t-test between control group (2) and treatment group (3), pre-treatment



The expansion of the large-scale mining industry, however, also causes concern about
environmental safety and sustainability (Economic Commission for Africa, 2011). The pol-
lution burden from gold mining is mainly cyanide used in the amalgamation process to sepa-
rate the gold from the ore, as well as arsenic found naturally in the gold ore, and other heavy
metals such as lead, cadmium, chromium and nickel. Cyanide and arsenic exposure in utero,
both lethal at high doses, are associated with adverse birth outcomes (Milton et al., 2005),
and lead exposure with increased risk of premature birth, low birth weight, and retarded
growth (Iyengar and Nair, 2000).

Despite these concerns, estimated pollution levels in mining areas are generally within
WHO thresholds, and the literature is inconclusive regarding the health effects below the
WHO thresholds (ATSDR, 2007b; ATSDR, 2007a). However, arsenic levels above the WHO
thresholds have been confirmed in mining areas in Tanzania and Ghana (Almas and Manoko,
2012; Serfor-Armah et al., 2006), for example after mining accidents. There is suggestive
evidence that pollution from mining activities reduces health: lead pollution from mining
activities has been linked to stunting in children (von der Goltz and Barnwal, 2014), and a
cross-sectional study in Spain found higher incidences of cancer in the population within
5 km from mining sites (Fernandez-Navarro et al., 2012). Because of the lack of reliable
and comparable data on heavy metal pollution in large-scale mining areas in Africa, it is not
possible to understand heterogeneity in pollution across different mining sites. However, the
large-scale gold mines included in the study are comparable in terms of production methods
(see appendix tables with mine characteristics), ownership and mineral content why there are
no clear hypotheses regarding the differential pollution levels across sites. 1 encourage future
studies, should environmental pollution data become available, to explore the dose-response
effect of pollution from mining on infant mortality and other health outcomes.

This study does not expand much beyond exploring infant mortality rates. There are

two reasons for this. First, the DHS data contains a limited number of reliable child health



indicators, such as cough, diarrhea and fever, and they are only collected in the sample year.
Second, because the analysis is conducted on countries with high infant mortality rates, |
argue that exploring effects of industrial development on infant mortality is justifiable and of
first-order importance. It remains possible and untested that more children survive their first

birthday, but face poorer long run health.

2 Empirical Strategy

The strategy of the paper follows Kotsadam and Tolonen (2016)® who estimate local employ-
ment effects from industrial mining in Africa, and links to the field of economic geography
measuring agglomeration economies, e.g., local multipliers (Moretti, 2010), and health near
industrial sites (Currie et al., 2011; Currie et al., 2015), including fracking sites in the US
(Currie et al., 2017). The empirical strategy is a difference-in-difference analysis, comparing
outcomes before and after in a treatment and a control group.

Treatment is based on proximity to mining site interacted with activity measures of the
mine. Previous literature on mining (Aragén and Rud, 2013; Aragén and Rud, 2015; Kot-
sadam and Tolonen, 2016; von der Goltz and Barnwal, 2014) and commuting behavior in
Tanzania, Ghana and Cote d’Ivoire (Shafer, 2000; Amoh-Gyimah and Aidoo, 2013; Kung
et al., 2014), indicate that mine treatment effects should be concentrated to communities
within 5-20 km from the mine. Kotsadam and Tolonen (2016) find the strongest treatment
effects within 10 km from the mine center point, but use a 20 km distance in their baseline
specification. DHS household coordinates are displaced by 1 to 5 km, and up to 10 km in
1% of the cases to ensure that individuals cannot be identified, and DHS recommends us-
ing binned thresholds larger than 5 kilometers. The baseline minimum distance used in this

paper is 10 km. A contribution of the present paper is its empirical approach to estimat-

3With a trivial modification to the variable specification to facilitate the interpretation of the coefficients.
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ing distance effects in spatial analyses where a radius of influence is not known a priori by
carefully mapping the spatial decay function with binned distance thresholds (equation 2) to
determine the treatment distance.

The main specification is the following:

Infantmortality;.q; = Bo + Piindustrial,, - minedeposit. + Byminedeposit,

+ 04 + Carrend + Okt + Xi + Eicar (1)

where the outcome, infant mortality in the first 12 months, is regressed on an indicator for

if there is a known gold deposit (known by 2012) within 10 km (called mine deposit), and
an interaction effect capturing if this mine deposit was in production in the year of the birth
(industrial*mine deposit). The regression controls for sub-national district fixed effects o,
district linear time trends Oy ;,.nq, and country-year fixed effects (birth year or survey year),
Oxr» and a vector of mother and birth controls, X;. Subscript i indicates an individual birth,
c DHS cluster, k country, and ¢ year. Individual level controls include mother’s age, age
squared, education, if the household lives in an urban area, and child’s birth order. In all
regressions, I have limited the sample to within 100 km from a deposit, and I cluster the
standard errors at the DHS cluster level (unless otherwise stated). In addition, I use a spatial
lag model that allows for non-linear effects with distance from the mine. This method is
further explained in the robustness section.

To estimate the causal effect of an industrial-scale gold mine opening on infant mortal-
ity, the timing and placement of the opening must be exogenous to local changes in infant
mortality. The necessary condition for a gold mine is a gold deposit, which is a geologi-
cal anomaly and random (Eggert, 2002). Moreover, multinational gold mining firms prefer
to invest in regions with low corruption, and stable and transparent business environments

(Tole and Koop, 2011). Such factors could vary at the national, province, or at most, district
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level and should pose no problem for the estimation strategy as it controls for unobserved
differences between districts (by using district fixed effects), national-level policy changes
or other unobserved factors changing annually (by using country-year fixed effects), and
district-specific linear time trends.

Access to infrastructure is one factor that varies within administrative districts. High-
volume, bulky resources such as coal and iron are heavily reliant on good infrastructure —
railways, road networks and ports—but the high-value commodity gold is less dependent on
regional infrastructure as it can be transported using air traffic (Weng et al., 2013). Suggestive

evidence of a subset of mining sites having their own air fields are provided in Figure AS8.

2.1 Parallel Trends

Both empirical strategies rely on the assumption that in absence of the mine opening, the
treatment and the control communities would have been on similar trajectories. The validity
of this assumption is examined using non-parametric techniques and event study graphs, and
presented in Figures 3, 4, and appendix Figures A2, A3, A4, and AS. I discuss these results
in more detail below. The data on births are divided into treatment communities, defined as
those living within 10 km from a mine, and control communities, that are located 10-100 km
away from a mine.* The horizontal axes represent mine lifetime, starting at 10 years before
mine opening year.

The mining communities and non-mining communities are on similar trends in infant
mortality in the years before the mine openings, which is confirmed using linear trend pre-

diction in Figure 3A°, and using local polynomial smooth in Figure 3B.

“Because 0-10 km around a center point is a much smaller area than 10-100 km around a center point, the
control group is larger in size. Moreover, at the extremes (-10 years, or + 10 years) the sample sizes are smaller
than for the mine life years in the middle.

>The specification is a linear model with no control variables and no fixed effects, hence substantially
different from the main regression specifications. It is regressing infant mortality as a function of mine life
year independently for the treatment group (within 10 km) and the control group (10-100 km away). A t-test
confirmed that the pre-mine opening slopes are not significantly different from each other. The data structure

12



Both specifications allow for a trend break at year -2—the start of the investment phase—
of the mine lifetime, in contrast to Figure 3C which shows one smoothed trend (thus not
allowing for a sharp break around the mine opening year). In the appendix I explore the
robustness of these results. I redefine the investment period to one year, allowing for a break
in year -1 (Figure A2B), or at year O (Figure A2C) which changes the slopes of the pre-trends
in the linear specification (presented in the left side column) and the trends in the treatment
and control groups appear non-parallel. However, imposing a linear structure is too strict
since the pre-period now includes the investment period (which pulls down the trend).® 1
conclude that the mine starts affecting local infant mortality rates at year -2 of the mine
lifetime, and that the empirical specification must allow for the investment period to differ
from the earlier period. I will do this in the main empirical specification by (i) excluding
the investment period from the sample, (ii) allowing for a different treatment effect during
the investment period, or (iii) including the investment period into the treatment period.
The results will be robust to all three specifications. However, the investment period is not
associated with the same pollution risk as the production phase but may have significant
economic effects leading to an underestimation of the pollution channel, why it’s not the
preferred specification.

There is seemingly an increase in mortality rates around mine life year 8 to 10 (Figure 3),
which could be because of mine closure or because of a reversal of the positive health effects.
However, removing mines that close does not significantly change the result. In this study,
we will not be able to understand the effect of mine closure on infant mortality—the majority
of gold mines opened during the study period, but few closed—Ileading to insufficient power
to investigate this aspect in a regression framework at the moment. Hopefully future studies

can investigate this aspect as more gold mines have closed down. Moreover, regression

is similar in Figures B and C, but fitting a local polynomial smooth instead, with or without excluding the
investment period.

OThis is illustrated by the non-parametric investigation of trends in Figure A2, where the right side column
shows fairly parallel trends from year -10 to year -2 for Figures A-C.
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analysis do not confirm an increase in infant mortality rates around mine years 8 to 10.

Figure A3 explores the same pattern for a sample which excludes migrants. I exclude
all migrants that moved to the community after the mine opening year, or in the four years
prior to the mine opening year. I do this to exclude anticipatory migration that may lead to
selection bias. The patterns observed when excluding migrants are similar to those in the
full sample. Row A—which excludes the two year investment phase—provides the most
suitable quasi-experimental setting. The linear trends are not perfectly parallel, but the local
polynomial smoothing allows us to see that the two groups are tracking each other over time,
especially in the last few years before mine opening.

The same figures are produced for boys (A4A), and girls (A4B) where the left col-
umn shows the result for the linear specification, and the right column for local polynomial
smooth. Overall, the trends explored using the local polynomial smooth look fairly par-
allel in the pre-period for both groups. The linear specification is slightly less convincing
- where treatment communities show a small increase in mortality for boys, and decrease
for girls - probably due to some years deviating from the overall trend as observed in the
non-parametric specification. Because sample sizes are now smaller, the data seems more
sensitive to outliers, as expected. The non-parametric specification however shows that the
pre-trends are very parallel in the last 5 years before mine opening, which is convincing for
the analysis.

The trends for infant mortality in the first 6 months of life (A4C) are parallel for the
treatment and control group, with a clear jump in the treatment group post-treatment. The
evidence is less convincing for neonatal mortality (first month of life) using linear trends
(A4D), possibly because of something happening in the treatment group in the years -10 to
-8. The polynomial trends look, however, parallel in the five years before the mine opening.

An alternative investigation of the parallel trends assumption is using night lights (Figure

5). The graphs show a stark deviation from the trend in year -2 of the mine lifetime, both in

14



the linear specification (A) and using local polynomial smooth (B).

2.1.1 Exploring parallel trends using regression

Moreover, I regress the same variable used on the X-axis, years until mine opening, in Figure
3A on the full sample using the control variables, time trends and fixed effects defined in the
main specification. To allow for differential trends for areas close to mines and areas further
away, | interact the variable years until mine opening with the indicator variable for close to
mine. The interaction effect, which captures the difference in time trend of mining areas and
non-mining areas, is 0.012 and insignificant at all conventional significance levels (p=0.107).

To further explore the parallel trends assumption in a regression framework, I predict and
plot the residuals from the baseline model (Table 2, column 1) but excluding the main treat-
ment variables (industrial*mine deposit, and deposit). The residuals are around zero for the
control group throughout the period. The residuals for the treatment group mimic the control
group up until year -2 of the mine lifetime, when they drop (Figure 4). Disaggregating by

gender shows similar results (see Appendix Figure AS).
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A Linear trend prediction: drop year -2 to 0
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Figure 3: Linear trend (A), local polynomial smooth (B), and local polynomial
smooth (C) for infant mortality in first 12 months

Notes: Years since mine opening is on the horizontal axis, ranging from ten years before mine
opening to ten years after mine opening. The treatment group is drawn within 10 km from the
closest mine, and the control group 10-100 km from the closest mine, excluding births with a second
mine within 20 km. Figure A and B allow for a break at year -2. Figure C provides 95% confidence
intervals. In contrast to the main specification there are no control variables or fixed effects, and only
the opening year of the closest mine is considered. Mine closing year is not considered.
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Residual plot: Infant Mortality first 12 months
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Figure 4: Event study graph plotting the residuals from the main estimation excluding
the treatment variables: Infant mortality first 12 months

Notes: The graphs plot the residual by year for the model explored in Table 2 column 2 excluding
the two treatment variables. The residuals are plotted for all births, excluding children who live near

a second gold mine (43 births).

3 Results and Mechanisms

3.1 Main Results

Table 2 shows the regression results for infant mortality using a 10 km distance cutoff: mine
opening is associated with a 5.5 percentage point decrease in mortality rates (column 1).
Taking potential spillovers into account by excluding the 10-30 km area, and the investment
phase (two years prior to mine opening), the coefficient is estimated at 7.9 percentage points
(column 2). Infant mortality decreases for boys (6.3 percentage points), and girls (9.5 per-
centage points). The effects are economically significant: the 5.5 percentage point decrease
in mortality is equivalent to 50% decrease in mortality rates, compared with the sample

mean.
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3.2 Selective Fertility

There is a noted association between fertility and infant mortality. On the one hand, a reduc-
tion in fertility can lead to higher investment per child, and improved child survival rates. On
the other hand, high infant mortality rates can motivate high fertility, ensuring a minimum
number of surviving children. The drop in fertility rate (-0.217 children per woman, see
Table 2) is, however, insignificant and too small to explain the whole drop in the infant mor-
tality rate: an accounting exercise shows that the counterfactual mortality rate would need
to exceed 80% among the children that were not born post treatment to explain the whole
reduction in mortality.” Results on the extensive and intensive margin are further explored
in Table 3. With the exception of a significant increase in the likelihood of a woman being
pregnant at the time of survey, there are no significant changes in the extensive or inten-
sive margin of fertility, nor the likelihood that a woman experienced a miscarriage or had
an abortion. Heterogeneous results by subgroups presented in Appendix Table AS indicate
that women in agriculture living in mining communities are more likely to ever had a child.
However, Appendix Table A4 show that children born to women working in agriculture and
living in mining communities experience a decrease in probability of mortality, compared
to women working in agriculture elsewhere. Note that the occupational categories are also

affected by the mining activities, so these effects should not be considered causal.

3.2.1 Trivers-Willard hypothesis

I explore the gender differential effects in more detail in Table A6. The main result is ro-
bust to inclusion of an indicator variable for the gender of the child. However, the gender
composition could be an outcome of changes in the external conditions as stated by the

Trivers-Willard hypothesis (see for example Almond and Edlund, 2007). In particular, it

"There are 3.260 births per woman, so 30.7 women give birth to 100 children. The regression results show
that 0.217%30.675 (6.656) fewer children will be born. The counterfactual mortality would need be 5.5 children
per 6.656 children born, above 80%, for the drop in fertility to account for the whole drop in mortality rate.
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Table 3: Intensive and Extensive Margin Changes in Fertility

(1) 2) 3) “4)

Dependent variable: ever had a total lifetime ever had terminated currently

child fertility pregnancy pregnant
industrial*mine deposit ~ -0.035 -0.217 -0.010 0.053%*

(0.022) (0.141) (0.028) (0.018)
mine deposit 0.019 0.107 0.014 -0.031*

(0.016) (0.105) (0.021) (0.016)
Mean of outcome 0.759 3.259 0.165 0.103
Observations 57,581 57,581 40,442 55,246
R-squared 0.378 0.673 0.092 0.025

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1 Standard errors clustered at DHS cluster level. Linear
probability models. All regressions in control for woman’s age, education, urban, and fixed effects for district,
country-survey year, and district linear time trend. The outcome variables are: if the woman ever gave birth to
a child, total children born , and ever experienced a terminated pregnancy because of miscarriage or abortion,
and currently pregnant. The sample size is smaller for the variable for terminated pregnancy as it is not always
collected by DHS. The sample is the DHS woman’s sample, and thus include all women aged 15-49 regardless
if they had a child in the last 5 years.
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is found within the biological and demographic literature that an improvement in external
condition is associated with more male births. In fact, columns 2 and 3 in Table A6 confirm
that large-scale mining is associated with an insignificant and higher likelihood of the birth
of a male child, which could be due to reduced incidence of miscarriages of male children
(although no significant change is observed in the likelihood of miscarriages, a variable that
is most likely measured with error). It is possible that the insignificant increase in the share
of male births partially explain the gender difference observed for the main treatment effect
(Table 2, columns 3 and 4). If less healthy male fetuses are now carried to term instead of
miscarried, it could lead to more marginal deaths in infancy.

Accordingly, a dummy for wealth of household (column 3) is associated with a 1.7 per-
centage points increase in the likelihood of a male birth, significant at the 10% level. Note
that wealth, which is defined to the household being in the top 40% of the wealth distri-
bution in the country, is affected by the presence of large-scale mining. Wealth scores are
0.421 higher in active mining areas (Table 2, column 8). The interpretation of these results
should thus be made with caution. The sample size is reduced when including wealth con-
trols (columns 5-8) as not all surveys used collected wealth data. The wealth dummy and
the wealth interaction effects with the treatment variables are all insignificant but in the ex-
pected directions. With a sample size of 17,701 (column 5-6), the main treatment effect
remains negative but is now insignificant, which could be due to the (i) reduction in sample
size, and (ii) that wealth is essentially an endogenous control through which mining affects

mortality risks.

3.3 Women’s Employment

Women’s employment and access to information about family planning may be important
determinants of infant health. Results in Table 2 confirm that women in mining communities

are 14.7 percentage points more likely to listen to radio shows discussing family planning
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than their peers, and 6.4 percentage points more likely to work in the service sector. This
result is supported by previous research on African mining (Kotsadam and Tolonen, 2016;
Tolonen, 2018) finding that women gain jobs in service sectors in mining areas and are more
empowered.

Using the sample of all women aged 15-49, we find that women in active mining com-
munities are insignificantly more likely to live in urban areas, and have 0.3 years more of
education (see Appendix Table A2). Moreover, we find no significant changes in the occu-
pational composition of partners to the sampled women (columns 4-7). These results are for
all women, and not the women who have given birth to children, and not limited to those
who were young at the beginning of the mine lifetime. The effects should be stronger for
younger, unmarried women at the time of the mine opening, which is confirmed in Tolonen
(2018).

Appendix Table A4 explores heterogeneity for different occupational subgroups, al-
though as occupation is also affected by the large-scale mining these effects should not be

interpreted causally.

3.4 Access to Health Care

Corporate social responsibility programs from the mining companies and the change in local
economic growth could change access to health care and early health-behavior. I consider
this in Table 4, which shows that there are no significant changes in health care behavior, such
as received any antenatal care (column 1), was ever vaccinated (column 4), has health card
(column 5), nor were the children less likely to be very small at birth (column 2)—a proxy
measure for inadequate in utero growth or preterm birth—or have cough, diarrhea or fever
in the last 2 weeks before surveying. Nonetheless, there is an indication that knowledge and
use of oral rehydration therapy — an efficient and cheap treatment of diarrhea — increases

in the mining communities (column 6). This effect could indicate better access to health
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information, either from access to clinics or through media. Note that the samples differ
across the different outcomes, with columns 1-7 using all births (given data availability),
and columns 8-10, that record health at the time of the survey, using the sample of children
under the age of 5 who were alive at the time of surveying. Sample sizes also vary across the
columns as not all measures has been collected in all survey rounds.

Appendix Table A2 explores the effects of mining on an additional set of outcome vari-
ables, including if the community is urban, mother’s age and education, and occupations
of partners of women. Additionally, Table A3 includes some of the important child health
determinants as controls. However, because such variables may be changing with mining,
this analysis likely suffers from endogenous controls. Nonetheless, we note that the result is
robust to the inclusion of most variables, although the full model (column 8) which includes

wealth quintile controls yields an insignificant treatment effect.

3.5 Local Economic Development

The results on infant mortality are supported by similar non-parametric analysis of night
light density (Figure 5), a proxy for economic development. Night lights have been used
as a proxy for urbanization and economic performance in Africa —cf. Michalopoulos and
Papaioannou (2013)— although caution is advisable as the proxy may be less reliable in
areas with low level of economic development. Additionally, the mines may emit lights
at night due to around the clock operations. The extent to which measures of economic
growth from mining would suffer from this bias is not, to my knowledge, known. The
figure illustrates that mining areas (within 10 km) are on a similar night light trend as areas
further away (10-100 km from the mine location) in the pre-treatment period, although at
a higher level. However, starting in the investment phase (mine year -2) there is a clear
divergence with average light sharply increasing in mining areas and it stabilizes at a higher

level. Divergence from the pre-trend is expected during the investment period, which is
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capital intensive and is thought to generate local construction employment. There is a drop
in night lights at year 7, possibly due to a change in the composition of mines. The night
lights in the treatment group however remains well above that in the control group.

Because a local economic shock induced by mining changes many factors at once, it
is hard to further assess what mechanisms drive the reduction in infant mortality rates. To
summarize, several factors change alongside infant mortality with the mining boom: local
economic growth, women’s employment, access to health care information through media,
and knowledge about an efficient strategy to treat child diarrhea. Women in active mining
areas also live in households that are richer (Table 2, column 8).

There is a poverty gradient in infant mortality, as the biggest contributors to high mor-
tality rates globally are maternal and infant malnutrition (Black et al., 2013a), and easily
curable diseases such as diarrhea (Black et al., 2003; Dupas, 2011). Increases in local eco-
nomic activity, household wealth, and better access to health information — effects that we
have measured in active mining communities — could all have important roles in combat-
ting high infant mortality rates. Previous research show that health information joint with
cash transfers under the program PROSPERA significantly improved child health in Mexico
(Gertler, 2004). Interventions that target undernutrition and micronutrient deficiency could
reduce deaths in children under the age of 5 by 15%), if they reached 90% of the population
in the most needing countries (Bhutta et al., 2013). Increases in women’s earning potential
and household wealth could help families reach more nutritious diet. In addition, women’s
empowerment is thought to be positively linked to child health and welfare (Duflo, 2012).

We explored other potential mechanisms that could drive the result. However, we do
not identify changes in urbanization, migration status, women’s age, education, fertility,
breastfeeding behavior and access to sanitation. The sensitivity of the main results will be

explored further in the next section.
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Figure 5: Night lights
Notes: The figure shows a twoway line plot (A) and kernel-weighted local polynomial smooth
estimation (B) of night lights in mining areas (within 10 km from a mine) compared with the control
area 10-100 km away from a large-scale gold mine. Mines that close within 10 years are excluded.

4 Sensitivity Analysis

Model sensitivity tests are found in Table 5. From a parsimonious specification, the model is
modified sequentially to allow for country-birth year fixed effects (column 2), district-linear
time trends (column 3), spillover effects (column 4), as well as clustering of standard errors
at the district level (column 5), and mine level (column 6), and time invariant closest-mine
fixed effects (column 7). A limitation of the specifications using mine fixed effects is that if a
birth happened near several gold mines, the fixed effect will only control for the nearest gold
mine. The regression results are stable both in magnitudes and significance levels across the
specifications.

Table 6 shows the results from 5 different specification that vary the definition of the
treatment and control group. Model 1 allows for differential effects for the investment period,
by specifying an indicator variable for the last two years preceding the first year of production
of the closest mine, and interacts this variable with an indicator for whether the mine is
within 10 km from the household location. Model 2 combines the investment period and the

productive phase into one variable and interacts it with the proximity measure. The results
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from the model are in line with the main results in the paper, and are statistically significant.
The somewhat smaller treatment effect observed could be because the economic effects seem
to take up over time (as seen in the night light graphs), thus by including years -2 to O the
overall treatment effect is somewhat reduced. This model is not the preferred specification as
it, in the presence of environmental pollution from the extractive activities, it would risk to
overestimate the positive economic impacts and underestimate the environmental pollution.

Model 3 uses the baseline specification of the treatment variables but excludes the in-
vestment phase, whereas model 4 excludes the households that are located within 10 to 30
km away from a mine, and model 5 repeats the preferred specification that drops spillovers
for reference. Appendix Table A7 shows that the results are robust varying the spatial def-
inition of the control group, drawing it from 10-40 km, 10-50 km, 30-40 km, or 30-50 km
away from a mine. The treatment effect is robust across specifications (columns 1-4, varying
from 4.9 pp to 5.6 pp), also to the exclusion of the investment phase (columns 5-6). De-
spite some differences in the effect sizes depending on the exact definition of treatment, the
results point toward robust and negative effects of proximity to large-scale gold mining on

local infant mortality rates.

4.1 Neonatal Mortality

Table 5 columns 8 and 9 provide estimates for infant mortality measures in the first month,
and first 6 months using the baseline econometric specification. The sample sizes differ
across the regressions for 12, 6, and 1 month. This is because a birth is only kept in the
sample if the child was at least 12, 6, or 1 month (respectively) at the time of the interview.
A birth that happened 8 months before the interview will be included in the sample for infant
mortality 1 month and infant mortality 6 months, but not for infant mortality 12 months. The
sample sizes are 38,414 for neonatal mortality (1 month), 34,016 (for 6 months), and 29,221

(12 months). Note that this sample size is smaller than the sample sizes columns 1 to 3 that
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Table 6: Alternative specification of treatment, control and spillovers

Dependent variable: infant mortality first 12 months
Specification: model 1 model 2 model 3 model 4 model 5
(M 2) 3) “4) &)

industrial*mine deposit ~ -0.056*** -0.060%**  -0.077*** -0.079%**

(0.021) (0.020) (0.026) (0.026)
mine deposit 0.035* 0.036** 0.038** 0.047%% 0.048%*

(0.018) (0.017) (0.017) (0.023) (0.024)
investment*mine deposit  -0.007

(0.038)
investment period -0.002

(0.006)
(inv+ind)*mine deposit -0.053#**

(0.019)

birth month FE Yes Yes Yes Yes Yes
birth year FE Yes Yes Yes Yes Yes
drop 10-30 Yes Yes
drop 2 years Yes Yes
Observations 37,365 37,365 33,127 32,898 29,221

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Clustered standard errors clustered at DHS cluster level. All
regressions include baseline controls and fixed effects. Model 1 to 5 tries different specifications of treatment

and control. The models include additional treatment variables: investment period is an indicator variable for

the investment phase of the closest mine, defined as the two years before production starts; investment*mine

deposit interacts an indicator for close to a deposit (within 10 km) with the investment phase for the closest

mine, where the investment phase is defined as the two years before production starts; (inv+ind)*mine deposit

is an interaction variable for being close to a mine that was either in the investment phase or productive phase

at the time of birth.
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does not use the spillover specification introduced in column 4.

The mean values are also different:® average infant mortality rate in the first month
is 6.6%, in the first 6 months it has increased to 10.8% of all births, and in the first year
it increases to 15.1% of births (for the treatment group, pre-treatment). The mean values
indicate that the neonatal period — just after birth up to the first month — is a crucial time
for a child. The result (column 8) indicates that mine opening reduces neonatal mortality by
2.8 percentage points, or 42%. The mortality risk decreases also at later stages, indicated by

the 6.2 percentage points (or 57%) reduction in mortality in the first 6 months (column 9).

4.2  Selective Migration

Selective inward migration of women with better child survival is a potential concern. Re-
moving women who migrated during the investment phase (defined as the two years pre-
ceding the mine opening year) or later from the sample marginally reduces the estimated
effect to 7.3 percentage points (Table 7 column 3, compared with the main result in Table 2
column 2 of 7.9 percentage points). The effect is still economically and statistically signif-
icant. However, it is unclear from what year women may start moving to a mining area in
anticipation of it opening, so Table 7 I also drop early migrants from the sample. Excluding
all women who ever migrated is overly conservative: the majority of women migrants in
developing countries migrate for marriage (Rosenzweig and Stark, 1989). Excluding late
migrants, however, reduces the concern that selective inward migration of women drives the
result. In this table I only drop women who live within the mining community (within 10
km from the mine), where the mine was going to start producing within 1-5 years after her

migration decision, or if it had already started. Excluding women who migrated one year be-

8The proportion of child deaths that happen in the neonatal period varies with economic development.
Using demographic and health survey data from 44 countries, Black et al. (2003) show that in the highest
mortality areas ca 20% of child deaths are neonatal. In lower mortality areas, the proportion is higher at 50%.
This indicates that child mortality rates past the neonatal period respond better to development improvements.
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Table 7: Anticipatory Migration

Dependent variable: Infant mortality (12 months)

M 2 3) (G ©®) (6)

industrial*mine deposit (at birth) -0.079%%* -0.077%* -0.073** -0.070** -0.068%* -0.053
0.026)  (0.033)  (0.034) (0.035) (0.037) (0.035)

mine deposit (within 10 km) 0.048%  0.043 0.043 0.043  0.045%  0.039
0.024)  (0.027)  (0.027)  (0.027) (0.027) (0.025)

Sample limit:
migrated [...] years

before mine opening - 1 2 3 4 5
Birth month FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Country-birth year FE Yes Yes Yes Yes Yes Yes
District time trend Yes Yes Yes Yes Yes Yes
Drop 10-30 km away Yes Yes Yes Yes Yes Yes
Drop investment phase Yes Yes Yes Yes Yes Yes
Mean value 0.1018 0.1126 0.1126 0.1126  0.1127 0.1126
Observations 29,221 20,630 20,623 20,613 20,605 20,590
R-squared 0.104 0.104 0.104 0.104 0.104 0.103

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Clustered standard errors clustered at DHS cluster level. All
regressions control for mother’s age, age square, mother’s education, urban, child’s birth number and birth
month and fixed effects for country-birth year and district linear time trend. The regressions exclude migrants.
Column 2 exclude migrants who migrated one year before the mine’s first active year or later. Column 6
exclude migrants who migrated 5 years before the first mine opening year or later.

fore the first year of production of the mine, or later, reduces the coefficient size marginally
(7.7 percentage points, Table 7 column 2). Reducing the sample size by dropping earlier
migrants (columns 3-6) reduces the coefficient size further, although the magnitudes are still
large (5.3 to 7.3 percentage points) and significant (except for column 6). Women who are
born in the mining communities, or who moved to the communities several years before the
mine opening year thus also experience a drop in infant mortality risk.

The analysis, however, does not solve a potential issue of selective outward migration.

Women who have children with worse survival chances could move out from mining areas as
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a response to the start of gold mining, which would reduce the incidence of infant mortality.
DHS does not collect data on place of origin, so it is not possible to test this hypothesis.
However, no negative change in infant health is observed in the control communities, which
continue along the same trend (Figure 3A-C). Such an hypothesis is also contradicted by
regression results in Figure 7A, which detects no deterioration in the distance bins further

away from the mines.

4.3 Mother Fixed Effects

Mother fixed effects—previously used by Kudamatsu (2012)—can reduce the concern that
the effect is driven by selective inward migration. I use mother fixed effects in appendix
Table A8. The mother fixed effect sharply reduces the sample size (to 29,234 births for the
regression on infant mortality in the first 12 months) by imposing that a woman has more
than two births in the last five years before surveying, and that at least one birth happens on
either side of the mine opening year. In total, there are 94 women in the sample who who live
near a mine and fulfill these criteria. 368 women living within 10 km from a mine deposit
have more than one birth recorded in the sample, but do not necessarily experience the mine
opening during the time period. In total, there are fifteen thousand women who have more
than one birth captured in the data. The magnitude of the results using mother fixed effects
are comparable to the main results, although statistically insignificant. However, a power
calculation indicated that this sample size is insufficient to detect changes in an event as rare

as infant mortality.

4.4 Timing of Effects

The economic effects and pollution effects need not coincide: the pollution burden might

build up over time mitigating the positive effects on infant mortality stemming from eco-
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nomic growth. We find no evidence for this hypothesis. The coefficients for infant mortality
are negative for all years subsequent to mine opening (years 1-2, 3-4, 5-6, and so on up to
year 11-12) (see Figure 6A), although some coefficients are not significant. The results are
supportive of the pattern seen in Figure 3C that indicate less statistical precision further away
from the mine opening year, but a reversal of the negative effect on infant mortality.

Figure 6B allows for the effect on lifetime fertility to change over time. If a new mine
opens, it might take a few years to adjust fertility preferences and outcomes. However, there
is little evidence of clear changes in fertility over time. The coefficients vary across the years
and are for the most part insignificant, with the exception of years 5-6 and 11-12 where the
effect on fertility is estimated to be negative and significant.

As an alternative specification to explore timing of the reduction in infant mortality, the
sample is limited by the number of active mine years (Table 8). In this strategy, I compare the
control group to children born within 2 years of mine opening (column 1), or to children born
within the first 10 years since mine opening (column 6). There are only slight changes in
coefficient size and it peaks with specification 4, which allows for the effect to happen during
the five years after mine opening. The exercise illustrates that the drop in infant mortality
occurs alongside economic growth from the mine opening, and remains lower during the
mine’s productive phase. We can reject the hypothesis that the reduction in infant mortality

is offset during the mine lifetime as the pollution levels build up.
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Table 8: Timing of Effects

Dependent variable:

infant mortality first 12 months

) () 3) “) ®) (6)

industrial*mine -0.061%*  -0.067*** -0.070*** -0.093*** -0.061* -0.068%**

(0.030) (0.024) (0.024) (0.026)  (0.035) (0.024)
mine deposit 0.036 0.044%* 0.046**  0.068***  (0.038 0.047%*

(0.027) (0.021) (0.021) (0.024)  (0.035) (0.022)
Sample limit:
years after mine opening 2 3 4 5 6 10
Birth month FE Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Country-birth year FE Yes Yes Yes Yes Yes Yes
District time trend Yes Yes Yes Yes Yes Yes
Drop 10-30 km away Yes Yes Yes Yes Yes Yes
Drop investment phase Yes Yes Yes Yes Yes Yes
Observations 22,197 23,722 24,702 25,420 26,517 31,601
R-squared 0.112 0.110 0.109 0.118 0.120 0.108

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Clustered standard errors clustered at DHS cluster level. All
regressions control for mother’s age, age square, mother’s education, urban, child’s birth number and birth
month and fixed effects for country-birth year and district linear time trend. The different regressions limit the
treatment years to first 2 years, 3, 4, 5, 6, or 10 years after the first mine opening year. It imposes no restriction

on the pre-opening time period.
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Figure 6: Infant Mortality and Fertility by Mine Lifetime

Notes: Each graph shows results from 6 different regressions, separate for infant mortality in the first
12 months (A) and women'’s lifetime fertility (B). The specification in A is the baseline specification
which does not exclude spillovers. The vertical axis shows the sample used in the treatment group:
births happening within the first two years after mine opening (1-2), in year 3 and 4 (3-4), in year 5
and 6 and so on up to mine life year 11-12. The horizontal axis shows the coefficient estimate and
95% confidence intervals. The control group remains the same in all regressions. Figure B shows the
regression results using the same specification but for the women’s sample and with lifetime fertility
as the outcome variable.

4.5 Geographic Distribution of Effects

An alternative hypothesis is that the estimated treatment effect comes from an increase in in-
fant mortality in the control group. The reasons could be because of displacement of artisanal
mining from the large-scale mining site to nearby communities, or relocation of households
with worse health outcomes. However, Figure 3A shows that while the treatment group
sees a large reduction in infant mortality, the control group remains on a weakly negatively
sloping trend.

To allow for non-linear effects with distance and better understand the geographic distri-
bution of effects, I implement a spatial lag model. This specification will map the geograph-
ical distribution of effects across a 100 km plane from the mine center point. This strategy

will inform about the usefulness of the chosen threshold distance in the baseline strategy (10
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km). I allow for two sets of non-linear spatial structures:

Yiear = Bo+ Z Baindustrial.; - minedeposit, + Z Baminedeposit, 2)
N N

+0tg + Ogtrend + Okt + Xi + Eicar

fors € {0—10, 10 —20,...,60—70,70 — 100}

This spatial lag model allows for non-linear effects with distance from the mine. Each
birth is recorded to a distance bin—0-10 km, 10-20 km, etc.—and compared with the refer-
ence category 70-100 km away. The specification controls for the same fixed effects, trends
and individual level controls as the baseline specification. The results from this alternative
model can be seen in Figure 7A. Mortality rates decrease sharply in the closest bin (0-10
km), but there is no significant effect beyond 10 km. We can thus exclude the possibility that
the estimated treatment effect stems from a deterioration of health in the control group.

Next we explore the stability of the treatment effects of large-scale mining on infant
mortality when excluding one country at the time (appendix Figure A6) and one mine at the

time (appendix Figure A7). The effect sizes remain negative and significant.

4.6 Spatial Randomization Test

A spatial randomization inference test is used to show that the main results are not spurious
because of a mis-specified model. All mine locations are simultaneously offset between 0
and 50 km in any direction while the mines keep their de facto opening year. The exercise
shows that the results attenuate toward zero when doing so. Figure 7B shows the distribu-
tion of treatment effects (industrial*minedeposit) when the mine location was randomized
1,500 times. The dashed line shows the initial treatment effect using the baseline model. A
distribution centered at zero is not expected as the random mine placement (offset up to 50

km) will partially overlap with the 10 km treatment area. The exact p-value is presented in
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Figure 7: Spatial lag model (A) and Spatial randomization test (B)
Notes: Figure A shows the results from a spatial lag model with 10 km distance bins using the
baseline set of control variables and 95% confidence intervals. Figure B shows the distribution of
1,500 coefficients from a spatial randomization test. The true mine locations were simultaneously
offset by 0-50 km, and the main estimation model was re-estimated. The red line is the baseline
estimate and the exact p-value shows the likelihood of the original estimate being drawn from this
distribution.

the figure and shows that it is unlikely that a misspecification of the model (Equation 1) is

driving the results for infant mortality.

5 Discussion

The large-scale gold mining industry is rapidly expanding in Africa, yet we have limited un-
derstanding of how large-scale mining operations affect local communities. In this analysis,
I have attempted to fill the knowledge gap regarding infant mortality in the wake of the min-
ing boom. The analysis contributes to the understanding of a more general question: whether
local industrial shocks can reduce infant mortality despite pollution risks. Infant mortality
is an important parameter in the study context: the sample used in this study has an average
rate of infant mortality of 9.7%, with most districts recording average rates of 80-90 deaths
per 1000 births (Figure 8).

When a gold mine opens, the infant mortality rate decreases by more than 50% among
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Figure 8: Global trends in infant mortality compared with treatment effect (A),
District distribution of infant mortality (B)

Notes: The data in Figure A comes from UN Population Division and the calculations are the
author’s own. The data are provided with 5 years averages. The data in Figure B comes from DHS
and shows the distribution of infant mortality by district within the sample.
children who live within 10 kilometers.® The effects are geographically concentrated to the
vicinity of the mine: at 20 km distance, there is no longer a detectable change in survival
rates (Figure 7A). Importantly, selective migration of mothers with better child survival skills
does not explain the whole effect: children born to never or early migrants, who migrated the
latest 4 years before the mine opening year experience a drop in mortality risk comparative
to that of the full sample.

The large, significant and almost instant drops in infant mortality experienced by min-
ing communities around the time of mine opening may come from increases in local welfare.
The mining spurs local economic growth—proxied by night-lights—and women living close
to mines are 27% more likely to work in the service sector. Moreover, other potential chan-

nels change concurrently with the economic growth: households are wealthier, local women

also have better access to media discussing matters of reproductive health, and have better

950% is the less conservative measure using the main treatment effect (-0.055) and the mean in the overall
sample (0.097). The most conservative measure using the treatment group, pre-treatment mean (0.151) results
in a 36.4% change. The least conservative estimate is using the preferred specification (Table 2, column 2) of
7.9 percentage points and the mean of the treatment group, resulting in a 77.4% decrease in mortality.
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knowledge of the use of oral rehydration salts, and important remedy for diarrheal diseases.
One limitation of the study is that it cannot choose between potential channels that change
concurrently with the local industrial growth. However, effects of large-scale gold mining
on women’s empowerment is further discussed in Tolonen (2018). I exclude the possibility
that the effects are driven by a decrease in fertility among women in the local communities
or an increase in health seeking behavior.

The trend break in mortality happens in the years immediately preceding the first pro-
duction year, which corresponds to the capital investment period. The investment period is
known to generate local employment. Sensitivity analysis shows that infant mortality drops
around the time of mine opening and remains persistently lower during the mine’s productive
phase. The results are robust to the inclusion of mine fixed effects, the exclusion of district
linear time trends and birth-year fixed effects, and to different levels for clustering of the
standard errors. Furthermore, a spatial randomization test shows that artificially offsetting
true mine location by 0 to 50 km creates null-results. The study explores an industrial sector
during a period of expansion. The settings does not allow us to analyse the long run health
changes of an industry in the process of contraction, nor can the study inform us about the
effects of the expansion of large-scale gold mining on broader health outcomes, such as cog-
nitive development and cancers. I encourage future studies to focus help shed light on these
issues.

The estimated effects are economically important. The average morality rate in the min-
ing communities before the mines open is 151 deaths per 1000 births. The infant mortal-
ity rates drop by around 55 to 79 deaths per 1000 live births with the onset of large-scale
gold mining. The drop in mortality is comparable to historic reductions in infant mortality:
China’s infant mortality rate dropped by 58 deaths per 1000 births between 1960 and 1970,
or by 79 deaths between 1960 and 1980, from an average of 121 deaths per 1000 births (see

Figure 8B). During the peak of its development phase, the decades of 1950 and 1960, Sin-
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gapore decreased its mortality rate by 32 deaths per 1000 births. In contrast, in the United
States during the same period, mortality rates dropped from 25 to 14 deaths per 1000 births,
but from a lower level. The magnitude of the effect estimated in this paper corresponds to the
total gains in infant survivals achieved in Sub-Saharan Africa since the 1970s to today. This
illustrates that the reductions in infant mortality rates spurred by large-scale gold mining in
Africa are comparatively large and important.

The data used in this project comes from 1987-2012. A glance at the UN statistics for
infant mortality shows that infant mortality was a relevant factor also in the last recorded
time period (2005-2010). All study countries report high levels of mortality: 79 deaths (per
1000 live births) in Burkina Faso, 77 in Cote d’Ivoire, 116 in Democratic Republic of Congo,
72 in Ethiopia, 50 in Ghana, 93 in Guinea, 101 in Mali, 55 in Senegal and 64 in Tanzania
(Table A9). If a treatment effect such as the one estimated in this paper occurred today, coun-
trywide, in Ghana, Senegal or Tanzania, the target rate of infant mortality specified by the
sustainable development goals would be reached. This study using the boom in large-scale
gold mining in Africa shows that that local industrial development spurred by mining reduces
infant mortality rates by 50% within two to four years. The research highlights that industrial
development from natural resources has an important role to play in the achievement of the
sustainable development goals for infant mortality in Sub-Saharan Africa. However, future
research should explore the long run effects of the sector, including in the post-production

phase, and later life health outcomes.

Barnard College, Columbia University.
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Appendices

A Data

A.1 Demographic and Health Survey

The Demographic and Health Survey collects data on health and fertility in developing coun-
tries and 1s funded by USAID (see www.dhsprogram.com for more information). The dataset
used in this paper consists of 30 cross-sectional datasets joined as a repeated cross-section.
The paper uses two sets of data: child recode and women’s recode. The women’s recode
samples women aged 15-49 in eligible households. The women’s recode provides informa-
tion of her marital status, occupation and fertility. For example, the women’s recode is used
to estimate changes in local fertility levels. The main analysis on infant mortality is done on
the child recode. The child recode provides an entry for each birth to a woman surveyed in
the women’s recode, limited to births in the last five years prior to the interview. The subset
of women are therefore different in the two recodes: only women who have given birth in
the last five years will figure in the child recode. Extensive summary statistics are available

in Table 1, and variable definitions in Table A1 in the Appendix.

A.2 Gold Mining Data

The gold mine data comes from IntierraRMG. The data is licensed and obtained by sub-
scription. The subscription was obtained in 2013 from Oxford Center for Research Rich
Economies (OxCarre) where the author is an affiliated researcher. More information about
IntierraRMG can be found at http://www.intierrarmg.com. The dataset contains all large-
scale gold mines globally, with geographic coordinates and historic production volumes.

Due to missing information and potential misreporting of the data provided by IntierraRMG,
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all gold mining entries in the study countries were double checked against Mining Atlas - Ex-
plore the World of Mining (www.mining-atlas.com). Using Mining Atlas and Google Earth,
the true geographic location was extracted and updated to reduce measurement bias from
misreporting of the geographic coordinates. The coordinates were chosen to represent the
center point of the mining locations on Google Earth. These coordinates were then matched

with the coordinates at the village or neighborhood level provided by DHS.

A.3 Night lights

The raw night lights data come from NOAA (see http://ngdc.noaa.gov/eog) and uses Version
4 DSMP-OLS Nighttime Lights. The night light measures are stable lights by calendar year.
The data come at 20 arc second grids and were used to create area weighted average annulus

by distance from a gold mine.

A.4 UN Population Division

The country level statistics on infant mortality used to compare the estimates from the
analysis with the global trends in infant mortality, comes from UN Population Division,
Department of Economic and Social Affairs. The data are taken from World Population
Prospects: The 2015 Revision, File MORT/1-1: Infant mortality rate (both sexes combined)
by major area, region and country, 1950-2100 (infant deaths per 1,000 live births). The data
were used to calculate the average infant mortality rate among the countries analysed in the

paper. The raw data for selected countries are presented in Table A9.

A.5 GADM database of Global Administrative Areas

The DHS data provides region (subnational level 1) information. However, in this project
we have used district level information. The district data comes from GADM database of

Global Administrative Areas which provides the polygons for administrative areas globally.
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The name and size of subdivisions vary across countries. Subnational level 2 was chosen
for this project, regardless of the nationally specific name for this level and the average
geographic size of such a subdivision. The data were accessed from DivaGIS in August
2013 (www.diva-gis.org/datadown). The subdivision level 2 data were then extracted for
each DHS cluster, which is a village or a neighborhood in a city, by overlaying the DHS
cluster data and the GADM data using ArcGIS. The DHS clusters are offset with 1 to 10 km
to ensure privacy of respondents. This will introduce some random error in the assignment
of districts to individual observations as individuals living close to a district border may have

been assigned the neighboring district instead.
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Figure A2: Parametric and non-parametric estimation of trends for infant mortality

Notes: The graphs show results for two-way linear prediction (column 1) and kernel-weighted

polynomial smoothing (column 2) across four specifications (rows 1-4). The mine opening year is

the first year of production for the mine that is closest to the individual. The treatment group (red

line) is drawn from within 10 km for the closest mine. The control group (blue line) is drawn 10-100
km away, but excludes births with the second closest mine within 20 km. Row 1 uses the preferred

specification and allows for a break at year -2, and excludes children born year -2 to year 0. Row 2

allows for a break at year -1, row 3 at year 0, and row 4 does not allow for a break.
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Figure A3: Parametric and non-parametric estimation of trends for infant mortality.
Excluding migrants who moved 4 years prior to mine opening or later

Notes: The graphs show results for two-way linear prediction (column 1) and kernel-weighted

polynomial smoothing (column 2) across four specifications (rows 1-4). The mine opening year is

the first year of production for the mine that is closest to the individual. The treatment group (red

line) is drawn from within 10 km for the closest mine. The control group (blue line) is drawn 10-100
km away, but excludes births with the second closest mine within 20 km. Row 1 uses the preferred
specification and allows for a break at year -2, and excludes children born year -2 to year 0. Row 2

allows for a break at year -1, row 3 at year 0, and row 4 does not allow for a break. All births from

mothers who migrated 4 years before the mine opening year, or later, are excluded.
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Figure A4: Parametric and non-parametric estimation of trends for infant mortality
for boys (A), girls (B), mortality first 6 months (C), and neonatal mortality (D)

Notes: The graphs show results for two-way linear prediction (column 1) and kernel-weighted

polynomial smoothing (column 2) across four samples (rows 1-4). The mine opening year is the first

year of production for the mine that is closest to the individual. The treatment group (red line) is

drawn from within 10 km for the closest mine. The control group (blue line) is drawn 10-100 km

away, but excludes births with the second closest mine within 20 km. All rows (1-4) use the

preferred specification and allows for a break at year -2. Row 1: infant mortality first 12 months,

boys only. Row 2: infant mortality first 12 months, girls only. Row 3: infant mortality first 6 months.

Row 4: infant mortality first 1 month.
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Figure AS5: Event study graph plotting the residuals from the main estimation
excluding the treatment variables: Infant mortality for boys (A), girls (B)

Notes: The graphs plot the residual by year for the model explored in Table 2 column 2 excluding
the two treatment variables. The residuals are plotted for boys (A) and girls (B), excluding children

who live near a second gold mine (43 births).
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Figure A6: Drop one country at the time

Notes: The graphs show coefficient estimate for industrial *mine deposit for infant mortality in the
first 12 months for 8 independent regressions using the baseline model. Each regression excludes the

sample from one country as indicated by the country name.
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Figure A7: Drop one mine at the time

Notes: The graphs show coefficient estimate for industrial *mine deposit for infant mortality in the
first 12 months for 43 independent regressions using the baseline model. Each regression excludes

the sample from one mine.
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Figure A8: Google maps photos of three Tanzanian gold mines with airfields

Notes: An airstrip can be seen to the left of each mine site. Note that these mines are only a subset of

the mines included in the analysis.
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Table A2: Potential Mechanisms

)] 2 3) “ &) (6) (N
partner’s occupation
Dependent variable: urban age education agriculture manual service professional
industrial*mine deposit ~ 0.047 0.073 0.336 -0.064 0.049 0.018 0.010
(0.060) (0.075)  (0.328) (0.047) (0.035) (0.029) (0.023)
mine deposit -0.067  -0.053 -0.093 0.036 -0.020  -0.007 -0.009
(0.044) (0.061)  (0.163) (0.031) (0.024) (0.018) (0.011)
Observations 38,428 38,428 38,414 41,359 41,359 41,359 41,359
R-squared 0.439 0.984 0.427 0.448 0.136 0.104 0.176

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Clustered standard errors clustered at DHS cluster level.
Columns 4-7 use a woman’s partner’s occupation as outcome variable. The sample is the woman’s recode.
Service includes service and sales jobs, professional also includes clerical jobs.
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Table A4: Infant mortality allowing for heterogeneity by subgroups

Dependent variable:

industrial*mine deposit*service
industrial*mine deposit*agriculture
industrial*mine deposit*partner in ag
industrial*mine deposit

mine deposit

service

agriculture

partner in agriculture

Observations
R-squared

“4)

-0.067**
(0.030)
-0.069%*
(0.034)
0.065%**
(0.024)

0.006
(0.006)

25,343

(1 2) 3)
Infant mortality in first 12 months
-0.053* -0.066**
(0.032) (0.032)
-0.039%*  -0.043**
(0.017)  (0.017)
-0.055***  -0.040*  -0.036*
(0.020) (0.021)  (0.022)
0.035**  0.035%*  0.035%%*
(0.017) (0.017)  (0.017)
0.016 0.018
(0.013) (0.013)
0.008* 0.008*
(0.004)  (0.004)
36,320 36,320 36,320
0.103 0.103 0.103

0.099

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1 Standard errors clustered at DHS cluster level. Linear probability
models. All regressions in control for mother’s age, age square, mother’s education, urban, child’s birth
number, and fixed effects for district, birth month, and country-birth year, and district linear time trend.
Outcome is infant mortality in the first 12 months since birth. The treatment effects are interacted with

occupational categories, service or sales employment (service) and agricultural occupation (agriculture), or an

indicator variable for partner working in agriculture (partner in ag).
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Table A7: Varying the control group

Dependent variable:

Infant mortality in first 12 months

&) (2) 3) “) ®) (6)

industrial*mine deposit  -0.050%**  -0.049%*** -0.057*** -0.056*** -0.069**  -0.071%**

(0.018) (0.018) (0.018) (0.018) (0.029) (0.024)
mine deposit 0.026* 0.031%* 0.030%** 0.037+* 0.024 0.054 %

(0.013) (0.014) (0.015) (0.015) (0.025) (0.020)
Control group 10-40km 10-50km 10-40km 10-50km 30-40 km 30-50 km
Drop investment phase No No Yes Yes Yes Yes
Observations 8,338 12,697 7,410 11,276 3,504 7,370
R-squared 0.152 0.131 0.163 0.139 0.193 0.141
birth month FE YES YES YES YES YES YES
birth year FE YES YES YES YES YES YES
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Table A&: Mother fixed effects

Dependent variable: infant mortality infant mortality neonatal mortality
12 months 6 months 1 month
&) 2) 3)
industrial*mine deposit -0.121 -0.093 -0.089
(0.181) (0.125) (0.101)
birth order -0.020* -0.014 -0.011
(0.012) (0.009) (0.007)
Mother FE Yes Yes Yes
Country-birth year FE Yes Yes Yes
District time trend Yes Yes Yes
Birth month FE Yes Yes Yes
Drop 10-30km away Yes Yes Yes
Drop investment phase Yes Yes Yes

Sample sizes

Treated mothers before-after birth 94 94 94
Treated mothers with >1 birth 368 368 368
Treated children with >1 sibling 730 730 730
Mothers with >1 birth 15,093 15,093 15,093
Observations (# births) 29,234 34,030 38,428
R-squared 0.755 0.703 0.646

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Clustered standard errors clustered at DHS cluster level. All
regressions control for mother fixed effect, child’s birth number and birth month, and fixed effects for
country-birth year and district linear time trend. Mine deposit captures if there is a gold deposit within 10 km
from the household. Industrial captures if the gold deposit was actively extracted in the child’s birth year. The
sample size is larger when exploring neonatal mortality, as more children in the sample had, at the time of
surveying, lived to be older than 1 month. Children not yet 12 months of age, at the time of surveying, were
excluded from Column 1.
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Table A10: Mining sector by country

Country Total  First Total Average Open Underground Open Pit/
Mines Year Production (t) Production (t)  Pit Underground
Burkina Faso 7 1984 113.25 16.18 6 1 0
Cote d’Ivoire 5 1991 68.46 13.69 5 0 0
Ethiopia 1 1991 11.00 11.00 0 0 1
Ghana 18 1975 1008.03 56.00 16 1 1
Guinea 3 1995 207.28 69.09 3 0 0
Mali 8 1990 633.76 79.22 5 1 2
Niger 1 2004 15.98 15.98 1 0 0
Senegal 1 2009 20.19 20.19 1 0 0
Tanzania 7 1998 469.32 67.05 5 1 1
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Table A11: Mining companies

Company name

Country origin

Mines (in dataset)

Countries active

Akrokeri-Ashanti Gold Mines, Inc.

Al-Amoudi Family
Amara Mining PLC
Anglogold Ashanti Ltd.
Avnel Gold Mining Ltd.
Avocet

Banro Corp.

Barrick Gold Corp.
Bassari

Eden Roc Mineral Corp.
Endeavour Mining Corp.

Ghana National Petroleum Corp.

Gold Fields Ltd.

Golden Star Resources Ltd.
Tamgold Corp.

Kinross Gold Corp.
LionGold Corp.

MDN Inc.

Newcrest

Newmont Mining Corp.
Noble Mineral Resources Ltd.
Perseus Mining Ltd.
Prestea Resource

PMI Gold Corp.

Randgold Resources Limited
Resolute Mining Ltd.
Semafo Inc.

Severstal

Shanta Gold Ltd.

State of Cote d’Ivoire

State of Mali

Teranga Gold Corp.
Weather 11

Canada
Saudi Arabia
UK

South Africa
UK

UK

Canada
Canada
Australia
Canada
Canada
Ghana
South Africa
USA
Canada
Canada
Singapore
Canada
Australia
USA
Australia
Australia
Ghana
Canada
South Africa
Australia
Canada
Russia

UK

Cote d’Ivoire
Mali

Canada

Egypt

r—a»—AO’\[\)»—‘l\)[\)[\).lk»—tHH»—A»—A—AHH»—AUJ[\)N?—‘UJ»—‘»—‘LHH»—AE[\)»—[\)

Ghana

Ethiopia

Burkina Faso, Cote d’Ivoire
Ghana, Guinea, Mali, Tanzania
Mali

Burkina Faso

Congo (Dem Rep)
Tanzania

Senegal

Cote d’Ivoire
Burkina Faso, Ghana, Mali
Ghana

Ghana

Ghana

Burkina Faso, Mali
Ghana

Ghana

Tanzania

Cote d’Ivoire

Ghana

Ghana

Ghana

Ghana

Ghana

Cote d’Ivoire, Mali
Mali, Tanzania
Burkina Faso, Guinea
Burkina Faso, Guinea
Tanzania

Cote d’ Ivoire

Mali

Senegal

Cote d’Ivoire

Notes: Some mines are double counted if the ownership is shared. This is true for operations by State of
Cote d’Ivoire, State of Mali, Ghana Petroleum, Iamgold, Anglogold, Barrick, MDN, Eden Roc, Randgold Res,
Resolute and Weather II. Missing company information for Esasse and Dunkwa mines in Ghana and Poura in

Burkina Faso.
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