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Abstract

Recent research suggests that the threat of harsh sanctions does not deter juvenile crime.

This conclusion is based on the finding that criminal behavior decreases only marginally as

individuals cross the age of criminal majority, the age at which they are transferred from the

juvenile to the more punitive adult criminal justice system. Using a model of criminal capital

accumulation, I show theoretically that these small reactions close to the age threshold mask

larger responses away from, or in anticipation of, the age threshold. I exploit recent policy

variation in the United States to show evidence consistent with this prediction - arrests of 13-16

year olds rise significantly for offenses associated with street gangs, including drug, homicide,

robbery, theft, burglary and vandalism offenses, when the age of criminal majority is raised

from seventeen to eighteen. In contrast, and consistent with previous work, I find that arrests

of 17 year olds do not increase systematically in response. I provide suggestive evidence that

this null effect is likely due to a simultaneous increase in under-reporting of crime by 17 year

olds when the age of criminal majority is raised to eighteen. Last, I use a back-of-the-envelope

calculation to show that for every 17 year old diverted from adult punishment, jurisdictions

bore social costs on the order of $65,000 due to the corresponding increase in juvenile offend-

ing. In sum, this paper demonstrates that when criminal capital accumulates, juveniles may

respond in anticipation of increases in criminal sanctions, and accounting for these anticipatory

responses can overturn the conclusion that harsh sanctions do not deter juvenile crime.

∗I am deeply grateful to Francois Gerard, Jonas Hjort, Suresh Naidu and Bernard Salanié for guidance and support.
For helpful comments, I would like to thank Brendan O’ Flaherty, Ilyana Kuziemko, Charles Loeffler, Justin McCrary,
Lorenzo Pessina, Daniel Rappoport, Rodrigo Soares, Eric Verhoogen, Scott Weiner and numerous participants at the
Applied Microeconomics and Development Colloquia at Columbia University. All errors are my own.
†Department of Economics, Columbia University. Email: aa3332@columbia.edu
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1 Introduction

Recent research in economics and criminology suggests that the threat of punitive sanctions does

not deter young offenders from engaging in crime (Chalfin & McCrary 2014). This finding has

informed the public policy shift towards increasing rehabilitation efforts and reducing punitive

sanctions for younger offenders. This shift is reflected in states across the U.S., many of which

have recently increased the age of criminal majority - the age at which young delinquents are

transferred to the adult criminal justice system.

The view that punitive sanctions do not deter young offenders is not supported by qualita-

tive evidence. For instance, young offenders report consciously desisting from criminal activity

close to the age of criminal majority, driven by the differences they perceive in the treatment of

juvenile and adult criminals (Glassner et al. 1983, Hekman et al. 1983).1 While this divergence

may be driven by methodological differences, it may also be explained by two limitations of the

empirical literature. One, adolescent crime is modeled as a series of on-the-spot decisions, with no

dependence on previous criminal involvement. Two, if crime is underreported at a higher rate for

juveniles (those below the age of criminal majority) than adults, previous estimates may be picking

up the combined effect of deterrence and under-reporting.

This paper addresses both of these shortcomings. I first formalize a theoretical model in which

individuals not only evaluate the costs and benefits of crime in each period, but also accumulate

criminal capital as they commit crime. Each period, returns to crime increase with accumulated

criminal capital and decrease in potential sanctions. When the age of criminal majority (henceforth,

ACM) is raised from seventeen to eighteen, this framework predicts that individuals younger than

seventeen should also increase criminal activity, not just seventeen year-olds. This suggests that

we may be able to deal with the issue of under-reporting, since we do not need to rely exclusively

on estimates based on seventeen year-old offending.2

I present evidence consistent with these predictions using recent variation in the ACM in the

United States. To examine juvenile offending that benefits from criminal capital, I use crimes most

commonly associated with street gangs, which provide an environment for juveniles in the U.S.

to build criminal experience and access additional criminal opportunities. Using a difference-in-

difference-in-difference framework, I show that arrest rates of 13-16-year-olds for these crimes

increase significantly when the ACM is raised from seventeen to eighteen. Arrest rates for 17-year-

1Similarly, law enforcement officials often voice concerns about the potential for heightened juvenile gang recruit-
ment and violence in response to raising the age of criminal majority. For instance, see https://www.dnainfo.com/new-
york/20170330/new-york-city/raise-the-age-juvenile-justice-16-17-year-old-charged-adults

2Focusing on 13-16-year-olds has the additional advantage of not being confounded by incapacitation effects. Since
juvenile sentences are often shorter than adult sentences, reported increases in 17-year-old crime may be driven by
reduced incapacitation, or shorter sentences. This confound does not affect 13-16-year-olds, who face identical sentences
after the ACM change.
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olds do not increase significantly, consistent with previous work. I provide suggestive evidence

that this may be due to a simultaneous increase in under-reporting of crime committed by 17-year-

olds. A back-of-the-envelope calculation shows that for every 17-year-old diverted from adult

sanctions, jurisdictions bore social costs on the order of $65,000 due to the increase in juvenile

offending. Overall, these results indicate that the deterrence effects of the ACM can be large,

particularly when we look for reactions in anticipation of the age threshold. These findings are

of particular relevance today, as states like Connecticut, Illinois, Massachusetts and Vermont have

introduced legislation to further increase the age of criminal majority.

The theoretical framework used in this paper is motivated by research which shows that crim-

inal experience increases the return to future offending (Bayer et al. 2009, Pyrooz et al. 2013, Car-

valho & Soares 2016, Sviatschi 2017).3 In each period, rational, forward-looking individuals weigh

the costs and benefits of crime to maximize lifetime utility. Benefits include both the immediate

return to crime and the increase in future return to crime (via the accumulation of criminal capital).

This framework generates two main predictions. First, criminal involvement will decrease as

adolescents approach the ACM. This is because the value of criminal capital diminishes consid-

erably once adolescents are treated as adults and face higher criminal sanctions. This decline in

the net return to future offending causes criminal activity to decline even before adolescents have

reached the ACM.4 Second, when the ACM is raised from seventeen to eighteen, this framework

predicts that all individuals below eighteen should increase criminal activity, not just 17-year-olds.

This is because the value of criminal capital increases for each age group that faces an extended

period of low sanctions. This increase in the net return to future offending causes criminal activity

to increase among 17-year-olds, as well individuals younger than seventeen.

In light of these predictions, I turn to the empirical analysis. As a first step, I use the Na-

tional Longitudinal Survey of Youth (1997-2001) to document patterns of criminal involvement

and gang-membership by age, separating states by their ACM. Cross-sectional variation in the

ACM across states is used to provide evidence consistent with the two main predictions of the

model. One, criminal involvement and gang membership (used as a proxy for criminal capital)

decline as adolescents approach the ACM. Two, this decline starts at a later age in states that set

the ACM at eighteen, as compared to those that set it at seventeen. These patterns are consistent

with the model, but remain suggestive.

For the core of the empirical analysis, I use recent variation in the ACM in Connecticut, Mas-

3Juveniles may also lose human capital while incarcerated (Hjalmarsson 2008, Aizer & Doyle 2015), increasing the
return to criminal capital and perpetuating long-term offending.

4Criminologists have hypothesized that offenders may desist from criminal activity as they approach the age of
majority (Reid 2011). Abrams (2012) also documents reactions in anticipation of gun-law changes, rationalized by a
model of forward-looking behavior in which individuals respond by not making investments related to a criminal
career.
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sachusetts, New Hampshire and Rhode Island to estimate the causal impact of the ACM on ado-

lescent crime. Estimates are based on a difference-in-difference-in-difference strategy, which lever-

ages variation in the policy across ages, states and time. I first show that the overall arrest rate

for 13-17-year-olds increases when the ACM is raised from seventeen to eighteen. This increase is

driven by offenses associated with a medium or high level of street gang involvement.5 Second,

arrest rates increase for each age group under seventeen; the estimate for 17-year-olds, however,

does not increase significantly. Next, I examine offense-specific arrest rates, and find that juvenile

arrests for drug, homicide, robbery, theft, burglary and vandalism increase by over fifteen per cent

of the mean. Arrest rates for offenses that are not associated with street gangs, such as driving

under the influence and liquor law violations, do not increase for any of the age groups under

eighteen. Finally, I examine demographic heterogeneity in response patterns and find that these

effects are mainly driven by arrests of White (including Hispanic) male adolescents. This is consis-

tent with effective treatment differing across race groups - if youth of color are disproportionately

charged in adult courts (Juszkiewicz 2009), raising the ACM may change their incentives less than

those of White youth. In sum, these results suggest that deterrence effects are not negligible, par-

ticularly for serious offending.6

I also provide suggestive evidence that the null effect on 17-year-olds may be due to a simulta-

neous increase in under-reporting of crime when the age of criminal majority is raised to eighteen.

I show that reported crime increases sharply as individuals surpass the ACM, which varies across

states within the U.S.7 I use the National Incident Based Reporting System (NIBRS) data for the

years 2006-14 to show that reported crime increases sharply at age seventeen in states that set the

ACM at seventeen, while this increase appears at age eighteen in states that set the ACM at eigh-

teen. This pattern shows up irrespective of whether we use arrests or offenses known to measure

criminal activity, and even when we restrict attention to the most serious crimes. These findings

are consistent with the fact that local law enforcement officials exercise discretion over how to han-

dle offenders, and that additional requirements must be met to hold juveniles in custody including

a strict 48 hour deadline to file charges.8

Deterrence estimates are likely to enter the calculus of state governments deciding where to set

the ACM. Proponents of raising the ACM usually argue that crime rates will be lower in the long

run because incarceration in juvenile facilities reduces recidivism. However, this benefit must be

weighed against the costs of reduced deterrence, as documented in this paper. Further, juvenile

5These are identified using the FBI’s 2015 National Gang Report, in which agencies identify crimes most commonly
associated with street gangs, and include homicide, assault, robbery, theft, vandalism and drug offenses.

6This is consistent with Bushway et al. (2013)’s findings that seasoned offenders were more responsive to fluctuations
in law enforcement practices (Oregon 2000 - 2005).

7This is analogous to the strategies employed in Costa et al. 2016 and Loeffler & Chalfin 2017.
8Greenwood (1995), Chalfin & McCrary (2014) also note that juveniles may be arrested at different rates than adults.
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incarceration is an expensive proposition, outstripping the costs of adult prison in the states un-

der consideration by a factor of two or three.9 A back-of-the-envelope calculation suggests that

the increase in juvenile crime cost the jurisdiction of an average law enforcement agency around

$340,000 in social costs, including both the costs of heightened offending and additional incarcer-

ation expenses. On the benefit side, the increase in the ACM meant that the average law enforce-

ment agency subjected 5.4 fewer seventeen-year olds to adult sanctions. Therefore, policymakers

should evaluate whether diverting a seventeen year old from adult sanctions is worth $65,000 in

benefits associated with the absence of a criminal record like lower recidivism and higher employ-

ment. Recent studies that report increased annual earnings of around $6,000 in response to the

clearing of a criminal record indicate that this may well be the case (Chapin et al. 2014, Selbin et al.

2017). An important takeaway from this exercise, however, is that raising the ACM does impose

costs on society and that these can be sizable, contrary to the findings of previous studies.

This paper contributes to the literature on whether sanctions can deter crime in general, and

adolescent crime in particular. The evidence on whether harsh sanctions can deter crime is mixed

(Nagin 2013, Chalfin & McCrary 2014, O’ Flaherty & Sethi 2014). Past studies have shown that it

may be possible to deter adult criminals - sentence enhancements in the U.S. were shown to deter

crimes involving firearms and drunk driving (Abrams 2012, Hansen 2015), poor prison conditions

were found to deter adult crime (Katz et al. 2003),10 California’s three strikes law reduced felony

arrests among offenders with two strikes (Helland & Tabarrok 2007) and sentence enhancements

in Italy were found to reduce adult recidivism (Drago et al. 2009). Levitt (1998) also showed that

as individuals transition from the juvenile to the adult system, crime falls by more in states where

the adult system is more punitive relative to the juvenile system, indicative of a deterrence effect.

However, punitiveness is measured by the proportion of juveniles in custody, which indicates that

these estimates could be driven by a greater likelihood of arrest11 instead of sanction severity.

More recent research on young offenders finds that the increase in sanction severity at the ACM

does not deter crime. These studies leverage the discontinuity in sanction severity at the ACM

(Hjalmarsson 2009, Hansen & Waddell 2014, Costa et al. 2016, Lee & McCrary 2017) or exploit

variation in the ACM over time (Loeffler & Grunwald 2015b, Loeffler & Chalfin 2017, Damm et al.

2017) to identify deterrence effects.12 Since these studies implicitly assume that the return to crime

is independent of previous criminal experience, the only test for deterrence is whether offending

9For instance, in Connecticut and Massachusetts, the cost per inmate in juvenile facilities is three times that in adult
facilities (Justice Policy Institute 2014).

10Shapiro (2007) and Drago et al. (2011) show, however, that poor prison conditions do not lower recidivism in the
U.S. and Italy respectively.

11Increasing the probability of arrest has been shown to be an effective way to discourage crime (Chalfin & McCrary
2014, O’ Flaherty & Sethi 2014).

12An exception is Oka (2009) who shows that juveniles in Japan reduced criminal offending in response to a reduction
in the ACM.
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rates for those above the ACM are lower than those below.13 Further, if crime reporting increases

once individuals cross the ACM, this test will lead to an underestimate of deterrence effects. This

paper shows that accounting for changes in reporting behavior requires looking at cohorts away

from the ACM to measure deterrence effects, and that these can be sizable.

This paper also seeks to contribute to the literature on how individuals think and behave in or-

der to develop alternative approaches to criminal deterrence. These approaches include Cognitive

Behavioral Therapy (CBT) which helps adolescents develop alternative ways of processing and re-

acting to information in order to reduce criminal activity (Heller et al. 2017). The Gang Resistance

Education And Training (G.R.E.A.T.) program, implemented in middle schools across America,

also employs CBT techniques and has been found to reduce gang involvement, but has not sig-

nificantly reduced violent offending (Pyrooz 2013). While interventions like CBT target those who

have not managed to extricate themselves from violent networks, I focus on the fact that some ado-

lescents may already possess the forward-looking behavior associated with reduced automaticity.

It is possible that these adolescents respond to the higher ACM by staying in gangs longer, and

continuing to offend at higher rates until a later age.

The results of this paper also contribute to the broader literature on how individuals account

for future events when making decisions. Within the crime literature and closely related to the

mechanism discussed in this paper, Imai & Krishna (2004) and Munyo (2015) show that the threat

to future employment serves as an effective deterrent for criminal activity. O’Flaherty (1998) shows

that those who confront a long sequence of criminal opportunities will act differently from those

who confront a single opportunity. Studies in public finance and labor economics also show that in-

dividuals react in anticipation of events like the exhaustion of unemployment benefits (Mortensen

1977, Lalive et al. 2006), job losses (Hendren 2016) and even access to higher education (Khanna

2016). My findings are also consistent with an extensive margin response - juveniles who wish

to reduce offending may leave criminal lifestyles such as gang membership entirely, rather than

continue on as gang members who reduce offending once they cross the age threshold.

The rest of this paper is organized into five sections. Section 2 provides background informa-

tion on juvenile crime trends and law enforcement approaches to juvenile delinquency since the

1990s. Section 3 lays out a theoretical framework in which individuals accumulate criminal capital,

and generates predictions on the response to changes in the ACM. Section 4 describes how these

predictions are tested in the data. Section 5 exploits policy variation in the Northeastern states in

the U.S. to show causal evidence consistent with the theoretical framework and presents a partial

13Damm et al. (2017) also test for role-model effects on age groups below the age of criminal responsibility, the age at
which individuals are transferred from the social service system to the criminal justice system. However, individuals
between the age of criminal responsibility and the age of majority in Denmark benefit from a number of sentencing
policies and options not available for adults (Kyvsgaard 2004), which makes it difficult to compare to the treatment in
the US setting. Oka (2009), however, finds deterrence effects for the age group immediately below the ACM in Japan.
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cost-benefit analysis. Section 6 concludes.

2 Setting and Data

This section provides a brief description of juvenile crime trends in the U.S., policy responses to

these trends, and the data sets used in the empirical analysis. Policy changes in the Northeastern

states in the U.S. are described at some length, because they are used to identify the impact of

the ACM on juvenile offending. I also provide suggestive evidence that criminal activity is more

likely to be recorded (and hence, observable to the researcher) if the offender in question is above

the ACM. Accounting for this variation in observability is one of the key contributions of this

paper.

Juvenile Crime: Trends & Policy Responses

The roots of the juvenile justice system in the U.S. can be traced back to the nineteenth century,

when the desire to remove juveniles from overcrowded adult prisons led to the development of

separate facilities for abandoned and delinquent juveniles, as well as alternative options like out-

of-home placement and probation for juvenile offenders. The juvenile justice system in the U.S.

today comprises of both separate facilities for housing juveniles as well as a separate system of

juvenile courts, in which the focus is on protecting and rehabilitating youthful offenders, usually

disbursed via the individualized attention of a judge (as opposed to a jury).

However, there exists substantial variation in the definition of juveniles within the U.S. The age

of criminal majority - the lowest age at which offenders can be treated as adults by the criminal

justice system14 - has varied considerably across time and space within the U.S. Table 1 displays a

complete list of states by the age of criminal majority in 2017, and whether it has had a different age

of criminal majority in the past. While the majority of states set the ACM at seventeen or eighteen,

the ACM has varied from nineteen in 1993 Wyoming to sixteen in Connecticut, New York and

North Carolina in the 2010s. Recently, Connecticut, Illinois and Vermont have even proposed bills

to raise the age of criminal majority to twenty-one.

Trends in juvenile crime help explain some of the variation in the ACM over time. Figure A.1

plots juvenile and arrest rates in the U.S. for the period 1980-2013. Noticing the sharp increase in

juvenile arrest rates in the 1990s (a trend that was not mirrored by adult arrest rates) states began

to "get tough on juvenile crime", passing laws that increased the severity of juvenile sanctions.

Between 1992 and 1975, all but three states passed legislation easing the transfer of juveniles into

14Some states have statutory exclusion laws in place, which allow offenders younger than the ACM to be tried as
adults for serious felonies like murder.
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the adult system, instituted mandatory minimum sentences for serious offenses, reduced juvenile

record confidentiality, increased victim rights or simply raised the age of criminal majority (Snyder

& Sickmund 2006). As shown in Table 1, New Hampshire, Wisconsin and Wyoming lowered their

ACMs during this period. However, the simultaneous enactment of policy changes in other states

makes it hard to disentangle the effect of the ACM from the effect of all of these other policies. Since

the identification assumptions necessary for a difference-in-difference analysis are unlikely to be

satisfied in this context, the empirical analysis focuses on more recent changes in states’ ACMs.

ACM Changes in the 2000s

This section describes recent changes to the ACM across states in the U.S. As Figure A.1 shows,

juvenile crime rates have fallen consistently since the 1990s. This decline has lent support to the

legislative push to raise the ACM in states that set it below eighteen. Many of these changes were

also catalyzed by the passage of the 2003 Prison Rape Elimination Act (PREA), a federal law aimed

at preventing sexual assault in prison facilities. The PREA goes into effect in 2018, and requires

offenders under eighteen to be housed separately from adults in correctional facilities, irrespective

of the state’s ACM. Naturally, this requirement will be more costly to implement in states that set

the ACM below eighteen and incarcerate 16 and 17-year-olds along with older inmates in adult

facilities.

The Northeastern states of Connecticut, Massachusetts, New Hampshire, New York, Rhode Is-

land and Vermont provide an arguably ideal setting in which to study the impact of ACM changes.

The first reason is that there existed tremendous heterogeneity in the ACM within these states in

2003. Connecticut and New York set the ACM at sixteen, Massachusetts and New Hampshire

at seventeen, and Rhode Island and Vermont at eighteen.15 Second, each of these states has intro-

duced legislation to change the ACM since the passage of the PREA, and five have been successful.

This lends credibility to the assumption that the actual timing of legislation passage was unrelated

to local crime trends. Last, their geographical proximity makes it likely that unobserved factors

are similar across the states.

Two other states recently raised the ACM - Illinois raised the age for misdemeanors in 2010

and for all felonies in 2014, while Mississippi raised the age for misdemeanors and some felonies

in 2011. Three reasons prevent the inclusion of these states into the study sample. First, the law

change is not identical to that of the Northeast, since the ACM is raised only for a subset of offenses

each time. Second, data is unavailable for most agencies in Illinois. Third, traditional control

groups are unavailable, since none of these states’ neighbors introduced legislation to change the

15A state’s ACM is usually an artifact of the time period in which it established its juvenile justice system. For instance,
New York set its ACM at sixteen in 1909, while other states settled upon higher ACMs over the ensuing decades.
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TABLE 1: STATES’ AGE OF CRIMINAL MAJORITY OVER TIME

State ACM in 2017 Changes

Alabama 18 16 until 1975,
17 until 1976

Connecticut 18 16 until 12/31/2009,
17 until 6/30/2012

Illinois 18 17 for misdemeanours until 12/31/2009
17 for felonies until 12/31/2013

Louisiana 18 17 until 2016
Massachusetts 18 17 until 9/18/2013
Mississippi 18 17 for misdemeanors

until 6/30/2011a

Still 17 for other felonies
New Hampshire 18 18 until 1996,

17 until 6/20/2015
New York 16 Will change to 17 on 10/1/2018

change to 18 on 10/1/2019
Rhode Island 18 18 until 30/6/2007,

17 until 11/7/2007
South Carolina 18 17 until 2016
Wisconsin* 17 18 until 1996
Wyoming 18 19 until 1993

Alaska, Arizona, Arkansas, 18 -
California, Colorado, Delaware,
District of Columbia, Florida,
Hawaii, Idaho, Indiana, Iowa,
Kansas, Kentucky, Maine,
Maryland, Minnesota,
Montana, Nebraska, Nevada, New
Jersey, New Mexico, North Dakota,
Ohio, Oklahoma, Oregon,
Pennsylvania, South Dakota,
Tennessee, Utah, Vermont,
Virginia, Washington, West Virginia

Georgia, Michigan*, 17 -
Missouri*, Texas*

North Carolina* 16 -

*Legislation introduced to raise ACM, not succeeded to date: Wisconsin AB387 introduced 9/23/13, failed 4/8/14;

Texas: HB 122 introduced 11/14/16, passed House on 4/20/17; North Carolina: HB 725, introduced 4/10/13, passed

House on 5/21/14; Missouri: HB 274 introduced 12/19/1; Michigan: HB 4607 introduced 5/11/7.

ahttps://www.ncjrs.gov/pdffiles1/ojjdp/232434.pdf
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ACM during the study period. Therefore, I focus on the Northeastern states as the setting for the

empirical analysis.

Arrest and Offense Data: Proxies for Criminal Activity

Criminal activity is not directly observable, so researchers rely on proxies like arrest and offense

data generated by local law enforcement agencies. A shared concern of papers that use such data

is that many steps lie between the criminal offense and the generation of an official report (Loeffler

& Chalfin 2017, Costa et al. 2016), such as the victim’s decision to file an official report.16 Official

data cannot reflect, for instance, the amount of crime which is not reported to the police17 or crime

that goes unreported due to the discretionary practices of individual officers.

Studies examining the effects of age-based criminal sanctions particularly worry that offense

and arrest reports are more likely to be generated if offenders are treated as adults by the criminal

justice system.18 This is because law enforcement officials must comply with additional supervi-

sory requirements while juveniles are held in custody - unlike adults, juveniles cannot be dropped

off at the local or county jail. Furthermore, juveniles can only be detained for forty eight hours

while charges are filed in juvenile court. These additional costs make it less likely that juvenile of-

fenders are officially arrested or charged, and therefore, less likely that their offenses are included

in official crime statistics. This is problematic for studies that compare individuals on either side

of the ACM, because reported crime will be higher for individuals that face lower incentives to

commit crime (individuals above the ACM). If the drop in actual crime is largely offset by the in-

creased probability of a crime being reported, we are likely to find very small deterrence estimates.

The latter effect may even dominate the former, leading to a rise in reported crime exactly when

the incentives to commit crime decrease. Costa et al. (2016) examine biases in criminal statistics

by testing for discontinuous increases in crime as individuals surpass the age of criminal majority

in Brazil. They find a significant increase in non-violent crimes by individuals just above the age

threshold, which suggests that under-reporting falls once offenders can be charged criminally as

adults. An analogous strategy is followed by Loeffler & Chalfin (2017), who show that arrests dip

sharply for sixteen year olds in Connecticut, as they are transitioned from the adult to the juvenile

justice system.

I use an analogous argument to provide evidence suggestive of reduced under-reporting at the

ACM in the U.S. - I show that reported crime increases sharply at age seventeen in states that set

16How crime statistics are generated is also a long-standing concern in criminology - see Black (1970), Black (1971)
and Smith & Visher (1981).

17The National Crime Victimization Surveys from 2006-10 reported that less than half of all violent victimizations are
reported to the police. Moreover, crimes against victims in the age group 12 to 17 were most likely to go unreported.

18For instance, see Loeffler & Grunwald (2015a) and Loeffler & Chalfin (2017).
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the ACM at seventeen, while this increase appears at age eighteen in states that set the ACM at

eighteen. Using monthly data at the law enforcement agency level for the years 2006-14, Panel

A of Figure 6 displays the proportion of arrests attributable to each age group in states that set

the ACM at seventeen. Panel B repeats this exercise for states that set the ACM at eighteen. The

spike in recorded crime is striking as we transition from the age just before the threshold (sixteen

or seventeen) to the age where individuals are treated as adults by the criminal justice system

(seventeen or eighteen). This is suggestive of reduced under-reporting as individuals cross the age

of criminal majority. Therefore, existing papers that compare juveniles with adults are likely to

report an estimate of deterrence that is adulterated by the effect of reduced under-reporting.

What are possible workarounds to get at true measures of deterrence? One way to circumvent

this issue is to use data that is less likely to be manipulated. For instance, Costa et al. (2016) study

violent death rates around the ACM in Brazil as a proxy for involvement in violent crime. They

argue that this is an improvement over police records because death certificates that include the

probable cause of death are necessary for burial and mandated by the national government. They

also highlight the main drawback of this measure - violent death rates may not be reflective of

trends in other, less violent crimes. In a similar vein, some studies on crime in the U.S. use data on

offenses instead of arrests (Loeffler & Chalfin 2017, Abrams 2012), since the latter are more likely

to be affected by police officer behavior. However, the age-crime profile described above is true

irrespective of whether crime is defined as arrests or offenses. Figure A.2 recreates the age-crime

profile, using the proportion of offenses attributable to each age group instead of arrests. There

is a clear spike in the proportion of offenses attributable to eighteen year olds in states that set

the ACM at eighteen, but not in states that set the ACM at seventeen. This indicates that data on

offenders below the ACM (not just arrestees) may suffer from under-reporting as well. Therefore,

using offense data provides a partial solution to the misreporting issue.

This paper proposes an alternative method to estimate deterrence effects. I examine responses

among cohorts for whom the degree of under-reporting is held fixed. I test for responses to in-

creases in the ACM among individuals who are always treated as juveniles, i.e. those to the left

of the former ACM. Since these age groups are treated as juveniles both before and after the ACM

change, the degree of under-reporting of crime is unchanged. If adolescents to the left of the thresh-

old increase criminal activity when the ACM is moved further away from them, reported crime

should increase. Furthermore, this response is a deterrence effect, since juveniles are responding

to the expectation of lower sanctions in the future by increasing offending in the current period.
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Street Gangs in the U.S. & Gang-Related Crime

This section uses criminological studies and national gang surveys to characterize youthful in-

volvement in street gangs in the United States. Crimes most likely to be related to street gangs are

the focus of the empirical analysis. The objective of this separation exercise is not to suggest that

other crimes cannot react to the ACM change - in fact, they may react strongly if there is enough

overlap between "gang" and "non-gang" crimes. Instead, the aim is to test whether the types of

crime that fit the framework of criminal capital accumulation actually do respond to the ACM

change.

Gangs19 are a growing problem in the United States. Following a steady decline until the early

2000s, annual estimates of gang prevalence and gang-related violent, property and drug crimes

have steadily increased (National Gang Center 2012, Egley et al. 2010).20 Street gangs are central

to the discussion of juvenile crime for two reasons. One, a large proportion of gang members are

juveniles - the 2011 National Youth Gang Survey estimates that over a third of all gang members

are under the age of eighteen, and Pyrooz & Sweeten (2015) estimate that there are over a million

juvenile gang members in the U.S. today. Two, gang members contribute disproportionately to

overall crime, particularly to violent adolescent crime. For instance, Thornberry (1998) and Fagan

(1990) documented that while gang membership ranged from 14 to 30 per cent across six cities -

Rochester, Seattle, Denver, San Diego, Los Angeles and Chicago - gang members contributed to at

least sixty percent of drug dealing offenses and sixty percent of general delinquency and serious

violence.21

Which crimes are most commonly associated with street gangs in the U.S.? Past work has

shown that gang members are not crime specialists (National Gang Center 2012, Thornberry 1998,

Fagan 1990, Klein & L. Maxson 2010). This finding is confirmed by the FBI’s 2015 National Gang

Report, which collected information from law enforcement agencies about the degree of street gang

involvement in various criminal activities.22 I define gang-related offenses as those for which street

gang involvement is reported as moderate or high in this report. These include eleven UCR offense

categories - homicide, robbery, assault, burglary, theft (including motor vehicle theft), stolen prop-

erty offenses, forgery and fraud, vandalism, weapon law violations and drug offenses.23

19The FBI National Crime Information Center defines a gang as three or more persons that associate for the purpose
of criminal or illegal activity.

20Also see https://www.usnews.com/news/articles/2015/03/06/gang-violence-is-on-the-rise-even-as-overall-
violence-declines

21Crime definitions varied by city. Recent research has also shown that this heightened delinquency cannot simply be
attributed to individual selection effects (Barnes et al. 2010), and is likely to be associated with gang affiliation itself.

22The survey question asked respondents to indicate whether gang involvement in various criminal activities in their
jurisdiction was High, Moderate, Low, Unknown or None.

23This crime pattern is broadly corroborated by Klein & L. Maxson (2010).
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Street gangs in the U.S. provide an environment in which juveniles can accumulate criminal

experience and access additional criminal opportunities, lending support to the assumptions of

the theoretical framework. Additionally, previous involvement with law enforcement makes gang

members more likely to be informed about changes in the ACM. These two features indicate that

gang-related crime should react in line with the predictions of the model. Therefore, I use gang-

related offenses to test the main predictions of the model. I also examine responses among offense

categories with at most a low level of street gang involvement - arson, embezzlement, gambling,

offenses against the family and children, driving under the influence and liquor laws, disorderly

conduct (including drunkenness), and suspicion (including vagrancy and loitering).24 The absence

of an increase in "non-gang" crimes is used to rule out the hypothesis that general crime trends are

driving the deterrence results found for "gang-related" crimes.

Data

Local law enforcement agencies in the United States choose to report crime statistics to federal

agencies in one of two ways - the Uniform Crime Reports (UCR) and the National Incident Based

Reporting System (NIBRS). This paper makes use of both of these data sources; the UCR covers

more law enforcement agencies in the U.S., while the NIBRS presents a more detailed picture of

crime within the agencies that it covers.

The Uniform Crime Reports have been compiled by the Federal Bureau of Investigation (FBI)

since 1930. UCR data contain monthly data on criminal activity within the agency’s jurisdiction,

with subtotals by arrestee age and sex under each offense category.25 As of 2015, law enforce-

ment agencies representing over ninety per cent of the U.S. population have submitted their crime

data via the UCR. This study uses monthly data at the law enforcement agency level for the six

Northeastern states during 2006-15.

The National Incident Based Reporting System (NIBRS) collects information on each crime

occurrence known to the police, and generates data as a by-product of local, state and federal au-

tomated records management systems. Importantly, offender profiles are generated independent

of arrest using victim and witness statements. This allows us to examine separately whether re-

porting behavior, not just arrest behavior, is influenced by the age of the offender. As of 2012, law

enforcement agencies representing twenty eight per cent of the population have submitted their

crime data via the NIBRS.
24I exclude from the empirical analysis the following offense categories - sex offenses, since the UCR definition of

offenses classified as rape changed in 2013; runaways, a status offense which only applies to juveniles and would be
expected to mechanically increase when 17-year-olds are treated as juveniles; uncategorized crimes, due to the lack of
interpretability for these results. These three categories account for around 27% of total arrests.

25In an incident wherein multiple offenses were committed, only the crime that has the highest rank order in the list
of ordered categories will be counted in the monthly totals.
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To examine how juveniles accumulate criminal experience by offending and associating with

delinquent peers, I use the National Longitudinal Survey of Youth 1997 (NLSY97). The NLSY97

is a nationally representative sample of approximately 9,000 youths who were twelve to sixteen

years old as of December 31, 1996. This dataset includes self-reports on gang membership and

criminal involvement (property, drug, assault and theft offenses) in the preceding twelve months

for each year between 1997 and 2001. I use these responses as representative of the age at which

the respondent spent the majority of the previous twelve months, and create age profiles for gang

membership and criminal involvement, separating states by their ACM.26

3 Theoretical Framework

This section presents a model of criminal behavior in which individuals are aware of the existence

of the ACM and internalize that current criminal activity increases the return to future criminal

offending. This framework isolates a deterrence response by identifying cohorts that increase

criminal activity in response to the change in the ACM, and then pinpoints cohorts for which

under-reporting confounds are unlikely to be an issue.

Life-Cycle Model of Crime with an Anticipated Threshold

In Becker (1968)’s seminal framework, individuals undertake criminal activity if the benefits of

crime outweigh the costs. I extend this model to allow individuals to accumulate criminal capital

as they undertake criminal activity over their life course in a continuous time framework.27 In

line with recent work,28 criminal capital increases the return to future crime, likely through access

to criminal networks and additional opportunities to commit crime.29 The setup is similar to a

standard model of optimal capital accumulation (Barro & Sala-i Martin 1995), however, individuals

can only benefit from criminal capital by committing more crime in the future.

Adolescents are indexed by age t and have preferences that are represented by an intertempo-

rally separable utility function u(ct, kt, st). At each at age, adolescents decide how much criminal

26Pyrooz & Sweeten (2015) create gang membership by age profiles, but do not separate states by their ACM.
27This is similar to the discrete time framework of Munyo (2015) in which both work- and crime-specific human cap-

ital evolve with past choices. Also related are Lee & McCrary (2017), who use a dynamic extension of Becker (1968) and
the static model of time allocation by Grogger (1998) in which individuals allocate time between leisure, formal work
and criminal activity. However, the return to crime is assumed to be independent of previous criminal involvement in
both of these studies.

28Pyrooz et al. (2013) and Carvalho & Soares (2016) show that embeddedness and wages in gangs increase with
participation in gang-related crime. Also see Levitt & Venkatesh (2000) who find that gang members are motivated by
the symbolic value attached to upward mobility in drug gangs, as well as the tournament for future riches.

29This insight is also similar to that of the rational addiction literature, which argues that individual decision making
reflects knowledge of inter-temporal complementarities in consumption. See Becker & Murphy (1988) for a theoretical
exposition.
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activity ct to undertake, knowing that they will face criminal sanctions st if caught. The return to

criminal activity is an increasing, concave function of criminal capital kt.

u(ct, kt, st) = R(kt).ct − Prob(Caught).st

Rk ≥ 0 Rkk ≤ 0

ct ≥ 0

The probability of facing criminal sanctions p(.) is assumed to be an increasing convex function of

criminal activity ct.30

u(ct, kt, st) = R(kt).ct − p(ct).st

pc ≥ 0 pcc ≥ 0

Criminal activity adds to an individual’s stock of criminal capital, which depreciates at the rate δ.

Therefore, the change in criminal capital at each age is current criminal activity ("investment") less

depreciation.

k̇t = ct − δkt

0 < δ < 1

Sanctions s for criminal offenses are a function of age t, and increase sharply as adolescents surpass

the ACM T .

st =


SJ t < T

SA t ≥ T
0 < SJ < SA

Individuals are forward-looking and maximize lifetime utility. Future flow utility is discounted at

the rate ρ ∈ (0, 1). The inter-temporal separability of the utility function allows us to write lifetime

utility Ut as the discounted sum of flow utilities ut.

Ut =
∫∞
t
e−ρ(τ−t)u(cτ , kτ , sτ )dτ

At each age t, individuals choose how much crime to undertake ct to maximize lifetime utility,

subject to the criminal capital accumulation equation.

Vt =Maxct
∫∞
t
e−ρ(τ−t)u(cτ , kτ , sτ )dτ

s.t. k̇t = ct − δkt
30This assumption is motivated by the fact that serious offenses are more likely to be reported to the police. For

instance, the 2010 National Victimization Survey reports that less than 15 per cent of motor vehicle thefts were not
reported to the police, while the analogous estimate for all other thefts was over 65 per cent.
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To solve this maximization problem, we first set up the current value Hamiltonian. Assume for

now that sanctions st do not vary with t (or that s = SJ = SA). The initial level of criminal capital

k0 is given.31

H(ct, kt) = u(ct, kt,SJ ) + λt(ct − δkt)

ct, the control variable, can be chosen freely; kt is the state variable, since its value is determined by

past decisions; λt, the costate variable, is the shadow value of the state variable kt. The Maximum

Principle generates three conditions characterizing the optimum path for (ct, kt,λt):

Hc = 0 =⇒ R(kt)− pc(ct)SJ + λt = 0 (2a)

Hk = ρλt − λ̇t =⇒ Rk(kt)ct − δλt = ρλt − λ̇t (2b)

limt→∞e
−ρtλtkt ≤ 0 (2c)

Equation (2a) pins down the optimal level of criminal activity at each age, and can be rewritten as

pc(ct)SJ = R(kt) + λt

Individuals choose ct to equate the marginal cost of crime pc(ct)SJ with the marginal benefits of

crime. Benefits from crime consist of the current return R(kt) plus the value of an additional unit

of criminal capital in the future λt.

Equation (2b) can be integrated to obtain the following expression

λt =
∫∞
t
e−(ρ+δ)(τ−t)Rk(kτ )cτdτ

λt represents the shadow value of criminal capital kt, and is equal to the present discounted value

of future marginal returns to criminal capital. This implies that expectations about future deci-

sions will influence the valuation of criminal capital in the current period. For instance, if criminal

activity is expected to decrease in the future, λt will decrease even if returns to ct are high in the

current period t.

Equation (2c) is essentially the Transversality Condition in a standard capital accumulation setup

(Barro & Sala-i Martin 1995) - on the optimal path, the value of criminal capital should not accumu-

late at a rate faster than the discount rate, so that individuals do not accumulate criminal capital

that they do not intend to utilize.
31k0 determines the return to criminal activity for an individual with no criminal experience, and may be influenced

by the criminal experience of one’s peer group or access to criminal opportunities.
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Dynamics Under Fixed Sanctions

For simplicity, I fix R(kt) = kαt , α ∈ (0, 1) and p(ct) = c2
t . Re-arranging the capital accumulation

equation and first order conditions, dynamics in the model can be summarized by:

k̇t = ct − δkt = 1
2SJ (k

α
t + λt)− δkt

λ̇t = (ρ+ δ)λt − αctkα−1
t = (ρ+ δ− α

2SJ k
α−1
t )λt − α

2SJ k
2α−1
t

Figure 1 displays the k̇t = 0 and λ̇t = 0 loci graphically.32 The arrows show how kt and λt must

behave in order to satisfy conditions (2a) and (2b), given their initial values. The k̇t = 0 and λ̇t = 0
loci intersect at the steady state level of capital of criminal capital - optimizing individuals will not

wish to increase or decrease their stock of criminal capital once they’ve accumulated k = kSSJ . In

the Appendix, I show that that the steady state level of k is given by

kSSJ = [ 1
2SJδ{

α
(ρ+δ)

+ 1}]
1

1−α

The steady state value of criminal capital decreases in criminal sanctions SJ , depreciation rate δ

and the rate at which future utility is discounted ρ; kSSJ increases with the returns to additional

criminal capital α.

This system of differential equations exhibits saddle path stability for a wide range of param-

eter values, described in detail in the Appendix.33 Recall that the initial value of capital k0 is

assumed to be given, while the shadow value of capital λ0 is free to adjust. Saddle path stability

means that there is a unique value of λ0 (on the saddle path, shown as the dashed line) such that

kt and λt converge to the steady state. If λ0 starts below the saddle path, the individual eventually

crosses into the region where both kt and λt are falling indefinitely. If λ0 starts above the saddle

path, the individual eventually crosses into the region where both kt and λt are rising indefinitely.

Both of these cases will violate the transversality condition (2c).34

Thus, given an initial value k0, optimizing individuals will move along the saddle path towards

kSSJ . If an individual’s initial k0 is lower than the steady state kSSJ , ct and kt will increase until

kt = kSSJ , and criminal activity will stabilize at

cSSJ = 1
2SJ [(k

SS
J )α + λSSJ ]

32This figure is drawn using the following parameter values: α = 0.4, δ = 0.3, ρ = .05, s = 10.
33For instance, 0 < α ≤ 0.5 is a sufficient condition for saddle path stability.
34There is a lower bound kmin such that no capital accumulation will take place if k0 < kmin (the asymptote of the

λ̇t = 0 locus on the k-axis). I focus on individuals for whom kmin < k0 < kSS
J and describe ct and kt as they move

along the saddle path towards kSS
J .
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FIGURE 1: SADDLE PATH UNDER AGE-INDEPENDENT SANCTIONS

Dynamics Under Anticipated Adult Sanctions

In this section, I describe the optimal response to the anticipation of higher sanctions SA for t ≥ T .

Graphically, individuals anticipate that both the k̇t = 0 and λ̇t = 0 loci will shift to the left for

t ≥ T , as shown in Figure 2. The k̇t = 0 locus shifts up and to the left because the increase in

sanctions makes it more expensive to replenish depreciated capital. The λ̇t = 0 locus shifts down

because ct is expected to fall in the future (due to higher costs) and this lowers the future return to

criminal capital. Figure 2 also shows that the new steady state level of criminal capital kSSA will be

lower than kSSJ .

To characterize the optimal response to an anticipated rise in sanctions, we use two pieces of

information. First, while the lower sanctions SJ are in effect the original k̇t and λ̇t functions still

dictate the evolution of kt and λt - graphically, the original arrows indicate how k̇t and λ̇t evolve

while t < T . Second, the shadow value of criminal capital λt cannot jump (decrease discontinu-

ously) at time T , since no new information about sanctions is learned at time T . Instead, λt will

jump down (decrease discontinuously) when the individual first learns about the higher sanctions

SA. As Figure 2 shows, this ensures that the individual moves toward the new saddle path during

t < T , and is on the new saddle path at time T . The individual then moves up along the saddle

path, decumulating criminal capital until he reaches the new steady state kSSA .

These dynamics dictate how criminal activity and criminal capital evolve as individuals age

into adulthood. Figure 2 shows that while individuals are below the ACM T , they will first add to

their stock of criminal capital kt, and later begin to decumulate kt as they approach T . Since, the

change in kt depends on ct net of depreciation, this also tells us about the behavior of ct, which first

increases and then decreases as individuals approach T . Optimal ct drops discontinuously when
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FIGURE 2: CRIMINAL CAPITAL ACCUMULATION UNDER ANTICIPATED ADULT SANCTIONS

individuals surpass T and face higher sanctions, and continues to decline as kt declines (since kt
determines the return to crime). Figure 3 plots the evolution of both kt and ct over time. We can see

from Figure 3 that deterrence shows up as a discontinuous drop in ct at T , but deterrence effects

also generate lower ct and kt prior to reaching the threshold T . This is a deterrence effect because

in the absence of adult sanctions, ct and kt would have converged towards their original steady

state levels (represented by the dotted grey lines).35

FIGURE 3: ct AND kt UNDER ANTICIPATED ADULT SANCTIONS

Notes: The dashed line marks the optimal paths for ct and kt if sanctions stay fixed at SJ .

35It is not necessary that (kt,λt) cross the original k̇t = 0 locus, as shown in Appendix Figures A.3 and A.4. Here,
kt and ct continue to increase until age T , but are lower than they would be in the absence of adult sanctions. The
predicted response to an increase in the age of criminal majority T remains the same.
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Comparative Statics

Entry Decisions

In the above analysis, each individual’s non-crime utility was normalized to zero. It is straight-

forward to show that if the outside option (or alternative to crime) improves, individuals are less

likely to commit crime in the first place.

Entry decisions are also influenced by the initial stock of criminal capital k0, since it determines

the payoff to crime. Individuals who begin wth a high initial stock of criminal capital, perhaps

because they live in areas where returns to crime are high or their peers are criminally active, are

predicted to be more likely to begin offending, leading to a self-perpetuating cycle of increases in

criminal capital and criminal activity. This prediction is consistent with papers that document very

large geographic heterogeneity in criminal offending, including the existence of crime "hot spots"

(Eriksson et al. 2016, O’ Flaherty & Sethi 2014).

Myopic Juveniles

Individuals who are not forward looking (ρ = ∞) will maximize flow utility, and not lifetime

utility. This means that they will not internalize the future benefits of criminal capital while making

decisions. The maximization problem is a static one (as in Becker 1968), in which individuals

commit crime if the current benefits outweigh the current costs. Therefore, the amount of criminal

activity that individuals at age t with criminal capital kt will undertake is given by

ct =
kαt
2st

In this case, criminal activity should decrease sharply when sanctions st rise as individuals cross

the ACM, and the only tests for deterrence are to compare juveniles on either side of the threshold,

or examine the behavior of the "newly juvenile group" (the group between T and T ′) when the age

threshold is moved from T to T ′. However, past estimates of the change in criminal activity at the

threshold have either been small (Lee & McCrary 2017) or negligible (Hjalmarsson 2009, Costa et al.

2016). This paper argues that these small effects could be due to mismeasurement of official data,

but also because individuals who are deterred by the threat of adult sanctions may exit criminal

lifestyles even before reaching the threshold.

Forward-Looking Adolescents

This section focuses on the subset of adolescents who are both informed of the age threshold, and

forward looking (ρ <∞). The model predicts that that when the ACM is raised from T to T ′, three

groups should increase criminal activity - age groups close to but below T , age groups between
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T and T ′, and age groups close to and above T ′. These predictions are tested in Section 5 using

recent ACM variation in the Northeastern states.

FIGURE 4: RESPONSE TO AN INCREASE IN T

FIGURE 5: CRIME RESPONSE TO AN INCREASE IN T

The first group to benefit from the ACM rise from T to T ′ is individuals below T ′, since each of

them will face lower sanctions (if caught) for an additional year. In response, individuals will begin

to increase criminal activity and accumulate additional criminal capital, as shown in Figures 4 and

5. For instance, a sixteen year old who would have reduced criminal offending and exited his gang

before he turned seventeen (T ), may postpone exit for an additional year when the ACM is shifted
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to eighteen. This will show up as an increase in gang membership and criminal offending by

sixteen year olds. Moreover, this response is unlikely to be offset by changes in reporting behavior

because sixteen year olds are treated as juveniles both before and after the policy change.

The second set of beneficiaries is the age group between T and T ′. These age groups were

treated as adults before the policy change, but are treated as juveniles after, and should also in-

crease criminal activity ct. However, if this policy change is accompanied by a simultaneous in-

crease in under-reporting, we may not observe an increase in official crime statistics for this age

group.

Finally, an ACM increase from T to T ′ will also lead to more criminal activity by age groups

above T ′. This is because criminal capital (and hence, the return to crime) is higher for age groups

aged T ′ and up. Since these age group are treated as adults both before and after the ACM change,

this response is unlikely to be offset by changes in reporting behavior, and we should observe an

increase in reported crime.

Suggestive Evidence from the NLSY

To provide suggestive evidence consistent with the predictions of the model, I examine the age

profile of self-reported gang membership and criminal involvement using data from the National

Longitudinal Survey of Youth. A panel of 8,984 adolescents were asked about gang membership

and criminal involvement (property, drug, assault and theft offenses) in the twelve months preced-

ing the interview. I use these self-reports to examine whether (1) gang membership and criminal

involvement decreases as individuals approach the ACM and (2) whether this decrease begins

earlier in states that set the ACM at seventeen instead of eighteen.

The first panel of Figure 7 displays the relationship between gang membership and age for

adolescents in all U.S. states that set their ACM at 17 or 18 (as in Pyrooz & Sweeten 2015). Gang

membership peaks at ages fifteen and sixteen and declines at ages seventeen and above. The

second panel of Figure 7 also shows the age profile of male gang membership, but separates states

by their ACM. Here, we find evidence suggestive of earlier exit in states that set the ACM at

seventeen, consistent with the predictions of the model. In particular, gang membership peaks

earlier (at fifteen) and begins its decline earlier (at sixteen) in states that set the ACM at seventeen.

In states that set the ACM at eighteen, gang membership peaks at sixteen, and then declines at

ages seventeen and eighteen. Figure A.5 shows that including female respondents leads to similar

patterns of gang membership by age.

Figure 8 examines whether the relationship between criminal involvement and age varies with

the ACM. The first panel depicts this relationship for adolescents in all U.S. states that set their

ACM at 17 or 18 - we see a clear upward trend until sixteen, and a sharp decline at seventeen.
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The second panel also displays the age-crime relationship but separates states by their ACM. Two

points are worth noting about this graph. One, criminal involvement in higher for all age groups

under eighteen. Two, the decline in criminal involvement begins earlier (at age sixteen) in states

that set the ACM at seventeen, and appears later, at age seventeen, in states that set the ACM at

eighteen. Both patterns are consistent with the predictions of the model. Figure A.5 repeats this

analysis for the sample including female respondents and shows that patterns of criminal involve-

ment by age are similar. In Section 5, I show that this pattern of higher criminal involvement for

all age groups under eighteen is at least partly driven by the higher age of criminal majority.

4 Empirical Strategy

This section describes the difference-in-difference-in-difference (DDD) framework used to identify

the impact of an ACM increase on adolescent offending. I restrict attention to the six neighboring

Northeastern states that have introduced legislation to raise the ACM since 2006. These states

can be divided into two groups - those in which the legislation was successful and the ACM was

modified (Connecticut, Massachusetts, New Hampshire and Rhode Island) and those in which the

ACM was left unchanged (New York, Vermont). The DDD technique compares those who were

affected by the ACM increase (adolescents) with individuals that were not (older adults) in the two

groups of states, before and after the ACM change.

Central Specification

I estimate the following DDD specification with age, state and year fixed effects, as well as age-

state, state-year and age-year interactions:

Calsmy = β0 + β1AFFECTa ∗TREATs ∗POSTsmy + γa+ γs+ γy + γas+ γsy + γay + γmy + εalsmy

Calsmy is a measure of the crime rate among age group a in location l in state s during month m of

year y. As a measure of the crime rate, I use the number of arrestees aged a per 100,000 residents

in location l. State and age fixed effects (γa and γs) account for permanent differences across states

and age groups. Year fixed effects γy account for national crime trends. I also include month fixed

effects γmy to control more flexibly for national crime trends.

This specification includes a full set of state-year interactions γsy which control flexibly for

factors that may be changing at the state-year level that could affect my outcomes of interest.

Age-state interactions γas allow for permanent differences across age groups in different states.

Age-year interactions γay control flexibly for national trends that may affect one age group more
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than another. Since treatment varies at the age level within each state, standard errors εalsmy are

clustered at the age-state level.

AFFECTa is an indicator variable that equals one for age groups 21 and under. TREATs is

an indicator variable that equals one if state s raised its ACM during the study period 2006-15.36

POSTsmy is an indicator variable that equals one if the ACM change in state s is in effect in month

m of year y. The coefficient of interest is β1, which is the DDD estimate of the effect of an ACM

increase on adolescent offending.

Event Study Specification

In order to examine the year-by-year impact of the ACM change, I use the following event study

specification:

Calsmy = ∑i≥−n βiAFFECTa ∗TREATs ∗POST ismy+γa+γs+γy+γas+γsy+γay+γmy+ εalsmy

Calsmy is a measure of the crime rate among age group a as described above. POST ismy are indi-

cator variables that equal 1 if the ACM was increased in state s exactly i years before period t. For

instance, Connecticut raised its ACM from 17 to 18 on July 1, 2012, so the POST 1 dummy equals

1 for Connecticut during July 2012 - June 2013, the POST 2 dummy equals 1 for Connecticut for

the period July 2013 - June 2014, and so on. Also notice that i may take on negative values, which

allows us to test for differences prior to the policy’s implementation. Regressions continue to con-

trol for age, state and year fixed effects, as well as age-state, state-year and age-year interactions.

Standard errors are clustered at the age-state level to adjust for serial correlation.37

Crime Indices

As mentioned above, I use the number of arrests per 100,000 residents as a measure of the local

crime rate. However, this outcome variable may be comprised mostly of a handful of frequently

occurring offenses such as theft, and not account adequately for serious but less frequent offenses

such as homicide. To overcome this drawback of the raw arrest rate, I create a crime index based

on offense-specific arrest rates as an alternative measure of local crime. Each index is defined as the

equally weighted average of the z-scores of its components (offense-specific arrest rates). Z-scores

are calculated by subtracting the control group mean and dividing by the control group standard

deviation.38

36Rhode Island lowered its ACM from 18 to 17 for the period July - November 2007. TREATs=Rhode Island takes on
the value -1, which ensures that β1 can be interpreted as the impact of an increase in the ACM.

37Since Rhode Island only changed its ACM for four months before reversing it back, I include it in the control group
for the event study regressions.

38Results are robust to using scores based on inverse variance weighting and are available on request.
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I construct two crime indices. The first index uses arrest rates for offenses categories that have

a medium or high level of street gang involvement as per the FBI’s 2015 National Gang Report.

These include drug, homicide, robbery, assault, burglary, theft (including motor vehicle theft and

stolen property offenses), forgery and fraud, vandalism and weapon law violations. The second

index uses arrest rates for offense categories that have at most a low level of street gang involve-

ment. These include arson, embezzlement, gambling, offenses against the family and children,

driving under the influence and liquor laws, disorderly conduct (including drunkenness), and

suspicion (including vagrancy and loitering). The objective of this separation exercise is not to

suggest that other crimes cannot react to the ACM change - in fact, they may react strongly if there

is enough overlap between "gang" and "non-gang" crimes. Instead, the aim is to test whether the

types of crime that benefit from the accumulation of criminal capital actually do respond to the

ACM change.

5 Results

In this section, I show that postponing the threat of adult sanctions leads to an increase in juvenile

offending. When the age of criminal majority is increased from 17 to 18, individuals aged seven-

teen and under increase criminal activity. This increase is driven by offenses related to street gangs,

including drug, homicide, robbery, theft, vandalism and burglary offenses. A back-of-the-envelope

calculation shows that for every seventeen year old that was transferred to juvenile facilities as a

result of the ACM increase, jurisdictions bore social costs of $65,000 due to the increase in juvenile

offending.

The setting for the empirical tests is a group of neighboring Northeastern States, namely Con-

necticut, Massachusetts, New Hampshire, New York, Rhode Island and Vermont. Each of these

states has experimented with raising the ACM since 2005, lending credibility to the assumption

that the actual timing of ACM changes within these states was exogenous, or unrelated to local

crime trends. These results are based on a balanced panel of agencies that submit data via the

Uniform Crime Reports for the period 2006-15.

5.1 Juvenile Crime

I first test whether increasing the ACM from 17 to 18 led to an increase in overall arrest rates for

13-17-year-olds. These results are presented in the first column of Table 2, which shows that the

monthly arrest rate increased by around 0.31, or 6 per cent of the mean, for each age group in the

range 13-17.

The second column reports analogous estimates for arrest rates for offenses with a medium or
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high level of street gang involvement, based off of the FBI’s 2015 National Gang Report. Here we

see that the previously documented increase is entirely driven by offenses associated with street

gangs, for which arrest rates increase by 0.34, or 7 per cent of the mean. Since the above estimate

may be driven by a handful of frequently occurring offenses, I also examine effects on a crime

index based on gang-related offenses (which weights offense categories equally). The lower panel

of Table 2 shows that the gang-related crime index increases, and that this estimate is statistically

significant at the 1 per cent level.

The third column reports analogous estimates for offenses with at most a low level of street

gang involvement, such as driving under the influence and liquor law violations. These offense

categories do not respond to the increase in the ACM - the estimated coefficient is small and statis-

tically indistinguishable from zero. Using a crime index based on these offense categories leads to

similar results - the estimated coefficient is negative and statistically indistinguishable from zero.

5.2 Age-Specific Estimates

The previous section presented a broad overview of the average impact of the ACM increase on

juvenile crime. In this section, I present age-specific estimates of the impact of the ACM increase

on both gang-related and other offenses. As predicted by the model, I show that the ACM increase

also leads to an increase in offending by those above the age of eighteen, since these adolescents

are now associated with a higher level of criminal capital, and their return to offending will be

higher than previous cohorts’.

Table 3 displays the estimated impact on arrest rates and crime indices for each age group in

the age range 13-21.39 The first two columns present results for offenses with a medium or high

level of street gang involvement - arrest rates increase for 13-16-year-olds by around 12 per cent

of the mean, and for 18-year-olds by around 8 per cent of the mean. The first panel of Figure 9

displays these age-specific estimates graphically. The smaller, statistically insignificant estimate

for 17-year-olds is particularly conspicuous. However, this finding may be driven by the fact that

seventeen year-olds are simultaneously exposed to lower sanctions as well as an increase in under-

reporting. The latter effect appears to offset the effect of lower sanctions, which can be observed

much more clearly for those aged 13-16 and 18.

Next, I use an event study specification to examine the year-by-year impact of the ACM in-

crease on arrests for gang-related offenses in the age group 13-21. The second panel of Figure 9

displays DDD coefficients for five years before and four years after the policy’s implementation.

We see a clear increase in arrest rates starting in the first year of the ACM change. Further, this

effect increases over time.
39The Uniform Crime Reports only report collective data for 13 and 14 year old arrestees.
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I also use the gang-related crime index as an alternative outcome variable to confirm that the

previous results are not driven by a a handful of frequently occurring offenses. The second column

in Table 3 shows that the ACM increase leads to a statistically significant increase in offending by

all age groups aged 13-21. Figure 10 displays these age-specific estimates graphically, showing that

the largest increases are observed for younger age groups. The second panel of Figure 10 displays

DDD coefficients for five years before and four years after the policy’s implementation, showing a

clear break in the first year of the policy’s implementation and an increasing coefficient over time.

Finally, I examine effects on crime categories that are not commonly associated with street

gang involvement. The last two columns of Table 3 show that neither the arrest rate nor the crime

index increase significantly for any of the age groups. This indicates that general crime trends

are unlikely to be driving the reported effects on gang-related crime. The last panel of Figure 11

displays year-by-year estimates from an event study specification to show that the increase in the

gang-related crime index is not mirrored by a similar increase in the crime index based on other

crime categories, following the ACM increase. Separate estimates for 17-year-olds show that the

estimated effect is actually negative during the first year of the policy’s implementation. This is in

line with a surge in under-reporting of 17-year old offenders, who are now treated as juveniles by

the criminal justice system.

5.3 Offense-Specific Estimates

In this section, I present results for arrest rates by offense category. This includes ten offense cate-

gories associated with street gang activity, and nine offense categories that are not.

Table 4 displays DDD estimates of the increase in arrests for offenses with a medium or high

level of street gang involvement. These estimates are displayed separately for 13-16-year-olds, 17-

year-olds and 18-21-year-olds. I find that the arrest rate for 13-16-year-olds increases by over 15

per cent of the mean for drug offenses and by over 20 per cent of the mean for homicide, robbery,

theft, burglary and vandalism offenses. This increase is not observed for 17-year-olds, and is only

observed for a subset of offenses for 18-21 year olds. In sum, the evidence points to a consistent

increase across gang-related crime categories for 13-16 year olds, but a less consistent increase for

other age groups close the ACM.

To show that general crime trends may not explain the effects documented above, I also exam-

ine the effect of the ACM increase on crime categories that are less likely to involve street gangs.

Table 5 displays DDD estimates for nine offense categories, separately for 13-16-year-olds, 17-year-

olds and 18-21-year-olds. There appears to be no consistent response for these offense categories

amongst 13-16 and 17-year-olds, since many of the estimates are negative, and most are statisti-

cally indistinguishable from zero. There is a statistically significant increase in the 18-21-year-old
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arrest rate for disorderly conduct and liquor law violations. However, the estimated impact of

the ACM increase on all other offense categories is small (relative to the mean) and statistically

indistinguishable from zero.

5.4 Demographic Heterogeneity

In this section, I examine which gender and race groups are driving the increase in gang-related

juvenile crime. The first panel of Table 6 shows a significant increase in arrest rates for males of

each age except 17, while the second panel shows a less statistically significant pattern for females.

This finding may be due to the low involvement of females in criminal enterprises like gangs -

for instance, the 2011 National Youth Gang Survey reports that the proportion of female gang

members did not exceed 8 per cent over the period 1998-2010.

The UCR data also report the number of arrests of individuals aged seventeen and under by

race. The last panel of Table 6 shows that the deterrence estimates are largely driven by an in-

crease in the arrest rate for White adolescents40 while the response among Black and Asian adoles-

cents is statistically indistinguishable from zero. This is an intriguing finding because the National

Youth Gang Survey reports that in 2011 around 58 per cent of gang members were White/Hispanic

while 35 per cent were Black. However, this pattern is consistent with effective treatment differing

across race groups. If youth of color are disproportionately charged in adult courts, as reported in

Juszkiewicz (2009), raising the ACM may change their incentives less than those of White youth.

In this situation, it would not be surprising to find larger effects for White adolescents and smaller

effects for adolescents belonging to other race groups.

5.5 Robustness Checks

This section shows that the above results are not driven by contemporaneous juvenile justice re-

forms, and are robust to using alternative age cohorts as control groups.

Other Juvenile Justice Reforms

A natural worry with studies that exploit ACM changes is that they are likely to have been accom-

panied by other juvenile justice reforms. This worry is partly assuaged by the fact that I control

for state-year shocks, which would pick up the effect of justice policy reforms that affect all adoles-

cents uniformly. I also show evidence for a reaction to the ACM by 18-year-olds, who are treated

as adults both before and after the ACM change, and would be unaffected by other reforms that

explicitly target juveniles.

40Agencies do not separately report arrests for Hispanic arrestees, who can be included in any of the race categories.
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Amongst the treatment states, Connecticut implemented a range of juvenile justice reforms

such as reducing in-school arrests in 2009 and discontinuing the detention of juveniles for non-

criminal cases in 2007. These reforms were not implemented in the same year as the ACM in-

crease, and the event study estimates indicate that these policies did not have a large impact prior

to the ACM change. Moreover, these policies serve to reduce the number of juvenile arrests, which

would lead to an underestimate of the true effect of the ACM increase. To show this formally, I

restrict attention to the three states that did not implement the ACM change as part of a pack-

age of reforms and re-estimate the DDD coefficients. Table A.1 reports the estimated effects on

the 13-17-year-old arrest rate separately for total, gang-related and other offenses after excluding

Connecticut from the sample. The total arrest rate increases significantly, and is entirely driven

by the increase in the arrest rate for gang-related offenses. The gang-related crime index also rises

and is statistically significant at the 1 per cent level. Each of these coefficients is larger than the

benchmark case, consistent with the contemporaneous juvenile justice reforms biasing the DDD

estimates downward.

Alternative Control Groups

The previous analysis defines individuals aged 13-21 as the treatment group and those aged 22

and above as the control group. In this section, I show that these results are not driven by the

choice of control group, and are robust to redefining the control group to include only older age

groups. Table A.2 presents the estimated effect on the 13-17-year-old arrest rate separately for

total, gang-related and other offenses when we vary the control group. The first panel presents the

benchmark estimates, while the bottom two panels show that controlling for arrest rates in the age

group 25-60 or 30-60 leads to very similar findings. The total arrest rate increases significantly, and

this is primarily driven by the increase in the arrest rate for gang-related offenses. The arrest rate

increase for other offenses remains small and statistically indistinguishable from zero.

5.6 Some Costs of Raising the Age of Criminal Majority

This section uses a back-of-the-envelope calculation to compare the social costs of raising the ACM

with its expected benefits. This is necessarily a partial estimation exercise, since I make multiple

assumptions and focus only on two sources of social cost increases due to the ACM change - the

increase in criminal offending by 13-16-year-olds and the costs of transferring 17-year-olds to more

expensive juvenile facilities. These cost estimates are then compared with the expected benefits of

raising the ACM, which include higher earnings for 17-year-olds without criminal records. While

the expected benefits of raising the ACM appear to offset the expected costs, an important take-
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away from this exercise is that these costs exist and can be sizable, contrary to the findings of

previous studies.

The first source of social costs due to the ACM change is the increase in criminal offending

by age groups below seventeen. For each crime category, I use the arrest-to-offense ratio from

the 2015 UCR data to predict the increase in the number of offenses by 13-16-year-olds.41 The

first two columns of Table 7 displays the estimates of the increase in monthly arrest rates of 13-

16-year-olds for homicide, assault, robbery, larceny, motor vehicle theft, stolen property, burglary,

vandalism, fraud, forgery and drug offenses following the ACM increase as well as the arrest-

to-offense ratio for each of these crimes. The third column displays McCollister et al. (2010)’s

estimates of societal costs by offense type, which include costs imposed directly on victims and

indirectly on the criminal justice system in the form of legal, police and corrections costs.42 The

fourth column displays the annual increase in costs (including incarceration43) by offense type

due to the uptick in offending, evaluated at the average treatment agency population of 27,200.

Overall, the crime increase among 13-16-year-olds led to an increase of $265,000 in societal costs,

two thirds of which is accounted for by homicide offenses.

The second source of social costs is the transfer of 17-year-olds to juvenile facilities. Juvenile in-

carceration costs in the treatment states average $544 per day (Justice Policy Institute 2014), while

the equivalent estimate for adult incarceration is $198 (Vera Institute of Justice 2017).44 My esti-

mate of the number of such transfers is based on the Office of Juvenile Justice and Delinquency

Prevention’s data on offense-specific probation and incarceration rates for 17-year-olds, displayed

in Table 8.45 The sixth column displays completed sentence lengths specific to each offense cate-

41This ratio does not include offenses that are not reported to the police and is therefore an underestimate of the total
increase in offending. This method will also underestimate the increase in offending if juveniles are arrested at lower
rates than adults.

42McCollister et al. (2010) employ cost-of-illness and jury compensation methods to estimate both the tangible and
intangible costs of crime. I use their estimates for three reasons - first, they provide the most recent set of estimates;
second, they provide cost estimates for more offense categories than Donohue III (2009); third, their estimates for the
overlapping set of offenses are broadly similar to those of other studies like Donohue III (2009) and Cohen et al. (2004).
I exclude McCollister et al. (2010)’s estimates of offenders’ productivity losses while incarcerated, since individuals
below seventeen are unlikely to be a part of the formal labor force. I also supplement these estimated with Mueller-
Smith (2016)’s social cost of drug offenses estimate of $2,544. I exclude simple assault and weapon law violations due
to the lack of social cost estimates for these offenses.

43This is likely to be an underestimate, since juvenile incarceration costs over twice as much as adult incarceration. I
also do not account for the fact that 13-16 year old offenders who are incarcerated may be more likely to recidivate in
the future.

44Since New Hampshire is not included in the Vera Institute of Justice 2017 report, I use the Vera Institute of Justice
2012 estimates assuming that its costs grew at the same rate as Connecticut and Rhode Island, who provided information
in both surveys. Estimates are in 2015 USD.

45Here, I make three assumptions. One, the proportion of seventeen year-olds adjudicated delinquent that receive
placement sentences (instead of probation sentences) does not change after the increase in the ACM. Two, the cost of
probation for a seventeen year old does not change when the ACM is raised to eighteen. Third, the completed duration
of incarceration does not depend on the ACM, an assumption supported by the findings of Fritsch et al. (1996) and
Fagan (Jan/Apr. 1996.).
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gory (person, property, drug and public order) also reported by the OJJDP. The increase in costs

due to the transfer of seventeen year-olds from adult to juvenile facilities is just under $75,000.46

What are the benefits of raising the ACM? Proponents of raising the ACM argue that juvenile

justice policies reduce recidivism. However, recent studies show that incarceration in juvenile fa-

cilities has a large impact on recidivism (Aizer & Doyle 2015) and that adult incarceration may

actually lower recidivism for marginal offenders (Loeffler & Grunwald 2015a). Therefore, I do not

focus on lower recidivism as the primary benefit of raising the age; instead, I estimate the number

of 17-year-olds who will be diverted away from adult prisons and will not receive criminal records.

This estimate is displayed by offense type in the fourth column of Table 8, which sums up to a total

of 5.35 17-year-olds.

The question for policymakers is whether a cost increase of $65,000 per seventeen year-old is

exceeded by the potential benefits. There are three reasons why it might - one, the expungement of

criminal records has been shown to increase college completion rates (Litwok 2014), boost employ-

ment and average annual real earnings by around $6,000 (Chapin et al. 2014, Selbin et al. 2017)

and reduce government dependence and increase tax revenues by around $2,200 (Chapin et al.

2014); two, the transfer to juvenile facilities may lower the risk of assault faced by the average

juvenile convict - McCollister et al. (2010) estimate victim costs alone of over $200,000 for sexual

assault and $100,000 for aggravated assault;47 three, if more 17-year-olds receive probation instead

of incarceration sentences, Aizer & Doyle (2015) and Bayer et al. (2009)’s findings indicate that we

may see an increase in high school completion rates and a decrease in recidivism. Focusing on the

increase of $6,000 in earnings alone indicates that increasing the ACM may have been a move in

the right direction.

6 Conclusion

Recent research shows that criminal involvement can persist into long-term offending, as individ-

uals accumulate skills and experience pertinent to the crime sector (Bayer et al. 2009, Pyrooz et al.

2013, Carvalho & Soares 2016, Sviatschi 2017) or lose human capital valued in the non-crime sector

(Hjalmarsson 2008, Aizer & Doyle 2015). However, existing research on the deterrent effects of

sanctions does not account for these inter-temporal complementarities in the returns to crime.

46If the marginal incarceration cost is around half of the average cost in both juvenile and adult facilities (as found by
Owens (2009) in Maryland) the cost increase will be around $37,500.

47It is difficult to quantify the change in assault risk faced by adolescents across different types of facilities. For in-
stance, Beck & Hughes (2004) document that rates of reported sexual assault are six times higher in juvenile correctional
facilities than in adult facilities across the U.S. This is likely driven by state laws specifying that all sexual acts involving
youth below certain ages are nonconsensual.
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In this paper, I show that accounting for these dynamic incentives can change how we look

for and measure deterrence. This approach also helps us deal with the issue of increased under-

reporting as individuals cross the age of criminal majority, which may have biased existing studies

towards finding effects of no deterrence. Using policy variation in the Northeastern states since

2006, I find that raising the age of criminal majority increases overall arrest rates for 13-17-year-

olds. This rise in arrests is driven by offenses commonly associated with street gangs, including

both property and violent offenses. Using a back-of-the-envelope calculation, I show that for every

17-year-old that was diverted from adult sanctions, jurisdictions bore costs of $65,000 due to this

increase in juvenile offending. Policymakers deciding where to set the age of criminal majority

must acknowledge that these costs can be sizable, and evaluate whether they are outweighed by

the potential benefits, such as an increase in educational attainment and employment associated

with fewer 17-year-olds having criminal records. This conclusion is particularly relevant today,

because states like Connecticut, Illinois and Vermont have introduced legislation to move the age

of criminal majority even further to twenty one.

Incorporating dynamic incentives into models of criminal decision making appears to be a

rich area for future work. While this paper applies this approach to study the deterrent effects of

criminal sanctions, it may also be applied to understand the effects of other features of the crim-

inal justice system. For instance, if criminal capital is slow to depreciate, the dynamic approach

would indicate that the positive effects of rehabilitative services are likely to be much larger when

evaluated over the long term.
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Figures

FIGURE 6: CRIME REPORTING INCREASES AT AGE OF CRIMINAL MAJORITY

PROPORTION OF ARRESTS BY AGE 2006-14

(A) AGE OF CRIMINAL MAJORITY = 17

(B) AGE OF CRIMINAL MAJORITY = 18

Notes: Uses monthly NIBRS data at the agency level from 39 states. Confidence intervals in red.
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FIGURE 7: GANG MEMBERSHIP-AGE PROFILE

(A) ALL STATES

(B) GANG MEMBERSHIP-AGE PROFILE BY AGE OF CRIMINAL MAJORITY

Notes: This graph uses the NLSY97 self-reported data on gang membership by male adolescents. The coefficients are
estimates from a regression of gang membership on age-fixed effects.
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FIGURE 8: CRIMINAL INVOLVEMENT-AGE PROFILE

(A) ALL STATES

(B) CRIMINAL INVOLVEMENT-AGE PROFILE BY AGE OF CRIMINAL MAJORITY

Notes: This graph uses the NLSY97 self-reported data on criminal involvement by male adolescents. The coefficients
are estimates from a regression of criminal involvement on age-fixed effects.
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FIGURE 9: IMPACT OF AN INCREASE IN THE AGE OF CRIMINAL MAJORITY

ON OFFENSES RELATED TO STREET GANGS

(A) AGE SPECIFIC ESTIMATES

(B) 21 AND UNDER ARREST RATE

Notes: Figures display the year-by-year estimates (and 95% confidence intervalss) of the impact of an increase in the
Age of Criminal Majority from 17 to 18. This figure uses the ACM implementation dates of July 2012 for Connecticut,

September 2013 for Massachusetts, and July 2015 for New Hampshire.
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FIGURE 10: IMPACT OF AN INCREASE IN THE AGE OF CRIMINAL MAJORITY

ON OFFENSES RELATED TO STREET GANGS (CRIME INDEX)

(A) AGE SPECIFIC ESTIMATES

(B) 21 AND UNDER (CRIME INDEX)

Notes: Figures display the year-by-year estimates (and 95% confidence intervalss) of the impact of an increase in the
Age of Criminal Majority from 17 to 18. This figure uses the ACM implementation dates of July 2012 for Connecticut,

September 2013 for Massachusetts, and July 2015 for New Hampshire.

42



FIGURE 11: IMPACT OF AN INCREASE IN THE AGE OF CRIMINAL MAJORITY

17-YEAR OLDS VERSUS 13-16 YEAR OLDS

(A) GANG-RELATED CRIME INDEX

(B) OTHER CRIME INDEX

Notes: Figures display the year-by-year estimates (and 95% confidence intervalss) of the impact of an increase in the
Age of Criminal Majority from 17 to 18. This figure uses the ACM implementation dates of July 2012 for Connecticut,

September 2013 for Massachusetts, and July 2015 for New Hampshire.
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Tables

TABLE 2: IMPACT OF AN INCREASE IN THE AGE OF CRIMINAL MAJORITY

ON JUVENILES AGED 13-17

Type of Offense All Gang-Related Other

Arrest Rate

DDD Estimate 0.310** 0.336*** -0.026
(0.135) (0.109) (0.118)

Mean 5.438 3.914 1.301

Crime Index

DDD Estimate 0.003 0.019*** -0.013
(0.015) (.003) (0.030)

Mean 0.004 -0.028 0.037

Observations 945,000 945,000 945,000

Notes: Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18. Each
regression controls for state, year and age fixed effects, as well as state-year, age-year and age-state fixed

effects. Standard errors are clustered at the age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE 3: IMPACT BY AGE GROUP

Age Group Gang-Related Offenses Other Offenses
Arrest Rate Index Arrest Rate Index

13-14 0.242** 0.024*** -0.183* -0.015
(0.101) (0.007) (0.103) (0.044)

Mean 1.695 -0.0240 0.346 0.0170

15 0.360** 0.022*** -0.219 -0.026
(0.173) (0.005) (0.181) (0.041)

Mean 3.020 -0.0170 0.728 0.105

16 0.652** 0.023*** 0.032 -0.010
(0.253) (0.006) (0.206) (0.045)

Mean 4.579 -0.0380 1.520 0.0120

17 0.160 0.012* 0.255 -0.007
(0.270) (0.007) (0.377) (0.046)

Mean 6.327 -0.0330 2.612 0.0130

18 0.538*** 0.018*** 0.796 0.083
(0.151) (0.006) (0.605) (0.152)

Mean 6.887 -0.0330 4.020 0.413

19 0.246 0.014** 0.999 -0.009
(0.193) (0.006) (0.617) (0.060)

Mean 6.520 -0.0360 4.188 0.311

20 0.163 0.009* 0.909 0.015
(0.232) (0.006) (0.574) (0.045)

Mean 5.803 -0.0380 3.911 0.209

21 -0.104 0.008* 0.432** -0.074
(0.187) (0.004) (0.164) (0.305)

Mean 5.505 -0.0410 2.850 1.094

Observations 756,000 756,000 756,000 756,000

Notes: Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18. Each
regression controls for state, year and age fixed effects, as well as state-year, age-year and age-state fixed

effects. Standard errors are clustered at the age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE 4: IMPACT BY OFFENSE TYPE

OFFENSES RELATED TO STREET GANGS

Offense Category 13-16 17 18-21

Drug Crimes 0.077*** 0.026 0.014
(0.029) (0.085) (0.070)

Mean 0.498 1.692 2.047

Homicide 0.002** -0.000 0.002
(0.001) (0.001) (0.001)

Mean 0.001 0.002 0.005

Assault -0.038 -0.029 -0.011
(0.052) (0.077) (0.025)

Mean 0.957 1.483 1.385

Robbery 0.011** 0.008 -0.017**
(0.005) (0.013) (0.007)

Mean 0.0510 0.100 0.0910

Theft 0.233*** 0.071 0.059
(0.055) (0.114) (0.050)

Mean 0.898 1.860 1.594

Stolen Property Offenses 0.050*** 0.128*** 0.065***
(0.012) (0.019) (0.011)

Mean 0.0900 0.198 0.179

Burglary 0.038*** 0.043 0.041**
(0.013) (0.035) (0.019)

Mean 0.199 0.362 0.316

Vandalism 0.113*** 0.062 0.075***
(0.018) (0.054) (0.020)

Mean 0.411 0.671 0.473

Weapon Law Violations 0.001 -0.022** -0.001
(0.005) (0.011) (0.006)

Mean 0.0560 0.0850 0.0900

Fraud & Forgery -0.028** 0.014 0.059***
(0.011) (0.012) (0.019)

Mean 0.0320 0.105 0.255

Observations 882,000 756,000 945,000

Notes: Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18. Each
regression controls for state, year and age fixed effects, as well as state-year, age-year and age-state fixed

effects. Standard errors are clustered at the age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE 5: IMPACT BY OFFENSE TYPE

OTHER OFFENSES

Offense Category 13-16 17 18-21

Arson -0.006 -0.001 0.002
(0.004) (0.003) (0.002)

Mean 0.0210 0.0170 0.0100

Embezzlement 0.002 0.0005 0.002
(0.001) (0.003) (0.003)

Mean 0.003 0.007 0.002

Offenses against the -0.004 -0.031 -0.003
Family & Children (0.009) (0.024) (0.005)
Mean 0.0320 0.0380 0.0450

Driving Under -0.124*** -0.069 0.066
the Influence (0.025) (0.052) (0.042)
Mean 0.0180 0.216 0.837

Liquor Laws 0.059 0.216 0.581**
(0.057) (0.235) (0.235)

Mean 0.298 1.352 1.784

Drunkenness 0.028 0.096 0.005
(0.030) (0.159) (0.050)

Mean 0.0760 0.288 0.383

Disorderly Conduct -0.063 0.050 0.097**
(0.047) (0.059) (0.041)

Mean 0.409 0.679 0.654

Gambling -0.0003 -0.0001 0.0003
(0.0003) (0.001) (0.001)

Mean 0.0004 0.002 0.002

Vagrancy, Suspicion, -0.008*** -0.007** 0.001
Curfew, Loitering (0.002) (0.003) (0.002)
Mean 0.00800 0.0150 0.0120

Observations 882,000 756,000 945,000

Notes: Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18. Each
regression controls for state, year and age fixed effects, as well as state-year, age-year and age-state fixed

effects. Standard errors are clustered at the age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE 6: IMPACT OF ACM INCREASE ON GANG-RELATED CRIME INDEX

BY DEMOGRAPHIC GROUP

Gender & Age Male 13-14 Male 15 Male 16 Male 17

DDD Estimate 0.142** 0.249*** 0.531** 0.100
(0.062) (0.082) (0.221) (0.247)

Mean 1.183 2.126 3.254 4.548

Gender & Age Female 13-14 Female 15 Female 16 Female 17

DDD Estimate 0.100** 0.111 0.121* 0.060
(0.043) (0.112) (0.063) (0.090)

Mean 0.511 0.894 1.325 1.778

Race & Age White 0-17 Black 0-17 Indian 0-17 Asian 0-17

DDD Estimate 1.366*** -0.051 0.186* 0.100
(0.432) (0.383) (0.094) (0.095)

Mean 14.67 3.177 0.0370 0.135

Observations 756,000 756,000 756,000 756,000

Notes: The UCR data does not contain age specific arrests by race, only the number of arrests under 18
separated by race; Hispanic arrestees are not reported separately and may belong to any of the race

categories. Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18.
Each regression controls for state, year and age fixed effects, as well as state-year, age-year and age-state

fixed effects. Standard errors are clustered at the age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE 7: SOCIAL COSTS OF INCREASE IN JUVENILE OFFENDING

Offense Arrest Rate Increase Arrest-Offense Unit Cost* Estimated Cost
13-16-Year-Olds Ratio 2015 $ 2015 $

Homicide 0.005 61.5 9,717,787 255,060
Robbery 0.038 29.3 41,842 17,689
Aggravated Assault -0.055 54.0 115,383 -38,193
Burglary 0.163 12.9 6,359 26,323
MV Theft 0.035 13.1 11,241 9,709
Larceny 0.451 21.9 3,706 24,929
Stolen Property 0.159 19.4 7,526 20,112
Vandalism 0.365 19.4 4,575 28,084
Forgery 0.009 19.4 5,066 741
Fraud -0.011 19.4 4,809 -892
Drug Crimes 0.069 20.0 2,544 5,767

Total $ 264,953***

Notes: Arrest Rate Increase estimates are based on DDD regressions that estimate the impact of an increase
in the Age of Criminal Majority from 17 to 18. Cost estimates are evaluated at a population of 27221, the

mean for treatment agencies. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE 8: SEVENTEEN YEAR OLDS: CHANGE IN ANNUAL COST OF INCARCERATION

Offense Monthly Adjudicated Waived to Adjudicated Placement / Duration Cost Cost
Arrest Delinquent Adult Court Delinquent Incarceration (Months) Adult Juvenile
Rate (Per 1000) (Per 1000) (Number) (Per 1000) Facilities Facilities

Homicide 0.001 408 65 0.0014 171 8.18 29 80
Rape 0.02 408 65 0.0285 171 8.18 578 1592
Robbery 0.058 459 84 0.0949 227 8.18 2279 6273
Aggravated Assault 0.141 401 36 0.1916 143 8.18 3319 9135
Burglary 0.157 405 29 0.2139 152 5.72 2728 7510
Larceny-theft 1.234 219 9 0.8908 44 5.72 6082 16740
Motor vehicle theft 0.046 388 17 0.0593 172 5.72 894 2460
Other Assaults 0.901 243 9 0.7217 65 8.18 9378 25812
Arson 0.008 330 4 0.0087 77 5.72 68 187
Forgery & Counterfeiting 0.013 272 14 0.0117 77 5.72 112 309
Fraud 0.012 272 14 0.0108 77 5.72 105 290
Embezzlement 0.006 272 14 0.0054 77 5.72 51 140
Stolen property 0.079 420 12 0.1097 138 5.72 1223 3367
Vandalism 0.354 277 8 0.3229 69 5.72 2732 7519
Weapons-carry, posses, etc. 0.054 372 16 0.0667 135 4.38 630 1733
Sex offenses 0.025 375 4 0.0307 118 8.18 471 1297
Drug Abuse Violations 0.85 258 8 0.7221 44 4.78 3495 9621
Family/Children Offenses 0.035 282 17 0.0328 62 8.18 350 963
Driving Under Influence 0.127 163 6 0.068 21 4.38 229 630
Liquor laws 0.967 163 6 0.518 21 4.38 1735 4777
Drunkenness 0.209 163 6 0.112 21 4.38 375 1031
Disorderly conduct 0.35 207 4 0.2376 26 4.38 775 2134
All other non-traffic 1.412 189 2 0.8735 42 4.38 5050 13900
Curfew & Loitering 0.019 207 4 0.0129 26 4.38 42 115

Subtotal 42730 117615

Total 5.35 74,885

Notes: Offenses not shown include manslaughter by negligence, prostitution and commercialized vice, gambling, vagrancy and suspicion,
for which the arrest rate is 0, and runaways - a status offense which only applies to juveniles. Evaluated at a population of 27221, the mean

for treatment agencies. Cost estimates are in 2015 $.
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Appendix

A.11.1 Solving the Model

This section calculates the the steady state values of kt and λt, and shows that the system exhibits saddle

path stability close to the steady state.

A.11.1.1 Steady State kt and λt

Dynamics in the model can be summarized by the following equations:

k̇t = ct − δkt = kαt +λt
2st − δkt

λ̇t = (ρ+ δ)λt − αct
k1−α
t

At the adult steady state, k̇t = 0

ct = δkt =⇒ λt = 2stδkt − kαt

At the adult steady state, λ̇t = 0 as well

(ρ+ δ)λt =
αct
k1−α
t

Substituting in ct = δkt

(ρ+ δ)λt = αkαt

Using λt = 2stδkt − kαt and assuming kSSA 6= 0

(ρ+ δ)(2stδkt − kαt ) = αkαt

=⇒ (ρ+ δ)(2stδk1−α
t − 1) = α

=⇒ kSSA = [ 1
2stδ{

α
(ρ+δ)

+ 1}]
1

1−α

The steady state value of criminal capital decreases in criminal sanctions s, depreciation rate δ and the rate at

which future utility is discounted δ. However, kSSA increases with the returns to additional criminal capital,

represented by α.

A.11.1.2 Saddle Path Stability

To show that the system of differential equations exhibits saddle path stability, I use a first order Taylor

approximation to linearize the system around the steady state values. This system can be written in matrix

form: [
kt

λt

]
≈

[
α(ρ+δ)−(α+ρ+δ)

α+ρ+δ
1

2st
(1− 2α)(ρ+ δ) + α(1− α) (ρ+ δ)(1− δα

α+ρ+δ )

] [
kt − k∗

λt − λ∗

]
= [A]

[
kt − k∗

λt − λ∗

]
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The necessary and sufficient condition for saddle-path stability is that the determinant ofA is negative. This

condition is met if 0 < α < 1
2 since

α(ρ+δ)−(α+ρ+δ)
α+ρ+δ < 0

1
2st > 0

(1− 2α)(ρ+ δ) + α(1− α) > 0

(ρ+ δ)(1− δα
α+ρ+δ ) > 0

However, this is a subset of the parameter values that satisfy the condition |A| < 0. For instance, any

(α, ρ, δ) that satisfy (1− 2α)(ρ+ δ) + α(1− α) > 0 will also guarantee saddle path stability.

A.11.1.3 kmin

λ̇t = 0

=⇒ λt = [ α
2SJ k

2α−1
t ]/[ρ+ δ− αkα−1

t
2SJ ]

=⇒ λt = αkαt
2SJ (ρ+δ)k1−α

t −α

→ ∞
as kt → α

2SJ (ρ+δ)
1

1−α = kmin
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FIGURE A.1: JUVENILE AND ADULT ARREST RATES 1980-2014

Notes: Based on data released by the Office of Juvenile Justice and Delinquency Prevention.
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FIGURE A.2: PROPORTION OF OFFENSES BY AGE 2006-14

(A) AGE OF CRIMINAL RESPONSIBILITY = 17

(B) AGE OF CRIMINAL RESPONSIBILITY = 18

Notes: This graph uses monthly data at the law enforcement agency level from 39 states in the NIBRS data. Confidence
intervals are shown in red.
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FIGURE A.3: CRIMINAL CAPITAL ACCUMULATION UNDER ANTICIPATED ADULT SANCTIONS

Notes: This figure presents an alternative path for kt that is consistent with optimizing behavior.

FIGURE A.4: ct AND kt UNDER ANTICIPATED ADULT SANCTIONS

Notes: This figure displays optimal paths for ct and kt under the scenario displayed in the above phase diagram. The
dashed line marks the optimal paths for ct and kt if sanctions stay fixed at SJ .
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FIGURE A.5: AGE PROFILES OF GANG MEMBERSHIP AND CRIMINAL INVOLVEMENT

(A) GANG MEMBERSHIP

(B) CRIMINAL INVOLVEMENT

Notes: This graph uses the NLSY97 self-reported data on gang membership and criminal involvement. The coefficients
are estimates from a regression of gang membership on age-fixed effects.
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TABLE A.1: IMPACT OF AN INCREASE IN THE AGE OF CRIMINAL MAJORITY

ON JUVENILES AGED 13-17
EXCLUDING CONNECTICUT

Type of Offense All Gang-Related Other

Arrest Rate

DDD Estimate 0.492*** 0.489*** 0.003
(0.170) (0.136) (0.127)

Mean 5.255 3.925 1.330

Crime Index

DDD Estimate 0.015 0.022*** 0.009
(0.015) (0.004) (0.026)

Mean 0.006 -0.027 0.032

Observations 817,200 817,200 817,200

Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18. Each
regression controls for state, year and age fixed effects, as well as effects Standard errors are clustered at the

age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE A.2: IMPACT OF AN INCREASE IN THE AGE OF CRIMINAL MAJORITY

ON JUVENILES AGED 13-17
VARYING CONTROL AGE GROUPS

Type of Offense All Gang-Related Other

Controls: 22-60

DDD Estimate 0.310** 0.336*** -0.026
(0.135) (0.109) (0.118)

Controls: 25-60

DDD Estimate 0.310** 0.257** 0.054
(0.129) (0.110) (0.107)

Controls: 30-60

DDD Estimate 0.285** 0.220** 0.065
(0.127) (0.109) (0.104)

Mean 5.255 3.925 1.330
Observations 817,200 817,200 817,200

Regressions estimate the impact of an increase in the Age of Criminal Majority from 17 to 18. Each
regression controls for state, year and age fixed effects, as well as effects Standard errors are clustered at the

age-state level. *** p<0.01, ** p<0.05, * p<0.1.
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